9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Melatonin-induced calbindin-D9k expression reduces hydrogen peroxide-mediated cell death in rat pituitary GH3 cells.

      Journal of Pineal Research
      Animals, Calbindins, Cell Death, drug effects, Gene Expression, Hydrogen Peroxide, pharmacology, Melatonin, Pituitary Gland, cytology, Rats, S100 Calcium Binding Protein G, biosynthesis, metabolism, Tumor Suppressor Protein p53

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated whether calbindin-D9k (CaBP-9k) expression was regulated by melatonin during hydrogen peroxide (H(2)O(2))-induced cell death in rat pituitary GH3 cells. CaBP-9k expression was increased by melatonin in a dose- and time-dependent manner, indicating that CaBP-9k expression is regulated by melatonin. Cell survival was increased approximately 27-30% where H(2)O(2)-treated cells (0.25 or 0.5 mm) were also incubated with 1 mm melatonin, when compared with H(2)O(2) alone or H(2)O(2) plus 0.5 mm melatonin. This result was consistent with 4,6-diamidino-2-phenylindole staining. CaBP-9k expression was also augmented by co-treatment with H(2)O(2) and 1 mm melatonin, suggesting a functional relationship between increased cell death and melatonin-induced CaBP-9k expression during H(2)O(2)-mediated apoptosis. Bcl-2-associated protein expression increased following treatment with H(2)O(2) alone, whereas Bcl-2 expression was elevated following treatment with melatonin alone, or H(2)O(2) plus melatonin. The expression of p53 was depressed by treatment with melatonin alone, or co-treatment with H(2)O(2) plus melatonin. These results correlated with CaBP-9k expression levels and activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Knockdown of CaBP-9k expression using a small inhibitory RNA resulted in an elevation of H(2)O(2)-induced cell death, whereas cell survival was increased in cells that overexpressed CaBP-9k, providing additional evidence that the induction of CaBP-9k expression may be associated with survival signaling during H(2)O(2)-mediated oxidative cell death. CaBP-9k appears to interact with p53, suggesting a possible role for this interaction in cell proliferation and cell cycle progression.

          Related collections

          Author and article information

          Comments

          Comment on this article