48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Caffeine, nicotine, ethanol and tetrahydrocannabinol (THC) are among the most prevalent and culturally accepted drugs in western society. For example, in Europe and North America up to 90% of the adult population drinks coffee daily and, although less prevalent, the other drugs are also used extensively by the population. Smoked tobacco, excessive alcohol consumption and marijuana (cannabis) smoking are addictive and exhibit adverse health effects. These drugs are not only common in the general population, but have also made their way into elite sports because of their purported performance-altering potential. Only one of the drugs (i.e., caffeine) has enough scientific evidence indicating an ergogenic effect. There is some preliminary evidence for nicotine as an ergogenic aid, but further study is required; cannabis and alcohol can exhibit ergogenic potential under specific circumstances but are in general believed to be ergolytic for sports performance. These drugs are currently (THC, ethanol) or have been (caffeine) on the prohibited list of the World Anti-Doping Agency or are being monitored (nicotine) due to their potential ergogenic or ergolytic effects. The aim of this brief review is to evaluate the effects of caffeine, nicotine, ethanol and THC by: 1) examining evidence supporting the ergogenic or ergolytic effects; 2) providing an overview of the mechanism(s) of action and physiological effects; and 3) where appropriate, reviewing their impact as performance-altering aids used in recreational and elite sports.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase.

          Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            International society of sports nutrition position stand: caffeine and performance

            Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis.

              The purpose of this study was to use the meta-analytic approach to examine the effects of caffeine ingestion on ratings of perceived exertion (RPE). Twenty-one studies with 109 effect sizes (ESs) met the inclusion criteria. Coding incorporated RPE scores obtained both during constant load exercise (n=89) and upon termination of exhausting exercise (n=20). In addition, when reported, the exercise performance ES was also computed (n=16). In comparison to placebo, caffeine reduced RPE during exercise by 5.6% (95% CI (confidence interval), -4.5% to -6.7%), with an equivalent RPE ES of -0.47 (95% CI, -0.35 to -0.59). These values were significantly greater (P<0.05) than RPE obtained at the end of exercise (RPE % change, 0.01%; 95% CI, -1.9 to 2.0%; RPE ES, 0.00, 95% CI, -0.17 to 0.17). In addition, caffeine improved exercise performance by 11.2% (95% CI; 4.6-17.8%). Regression analysis revealed that RPE obtained during exercise could account for approximately 29% of the variance in the improvement in exercise performance. The results demonstrate that caffeine reduces RPE during exercise and this may partly explain the subsequent ergogenic effects of caffeine on performance.
                Bookmark

                Author and article information

                Journal
                Nutr Metab (Lond)
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central
                1743-7075
                2013
                13 December 2013
                : 10
                : 71
                Affiliations
                [1 ]Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
                [2 ]Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California, Los Angeles, CA, USA
                [3 ]Department of Sports Science, Medical Section, University Innsbruck, Innsbruck, Austria
                [4 ]Healthy Lifestyles Research Center, School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
                Article
                1743-7075-10-71
                10.1186/1743-7075-10-71
                3878772
                24330705
                a369b844-50f1-45f7-a346-f50e49f2a77b
                Copyright © 2013 Pesta et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 4 October 2013
                : 2 December 2013
                Categories
                Review

                Nutrition & Dietetics
                doping,anti-doping,common drugs,performance enhancement
                Nutrition & Dietetics
                doping, anti-doping, common drugs, performance enhancement

                Comments

                Comment on this article