2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dances with Membranes: Breakthroughs from Super-resolution Imaging

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biological membrane organization mediates numerous cellular functions and has also been connected with an immense number of human diseases. However, until recently, experimental methodologies have been unable to directly visualize the nanoscale details of biological membranes, particularly in intact living cells. Numerous models explaining membrane organization have been proposed, but testing those models has required indirect methods; the desire to directly image proteins and lipids in living cell membranes is a strong motivation for the advancement of technology. The development of super-resolution microscopy has provided powerful tools for quantification of membrane organization at the level of individual proteins and lipids, and many of these tools are compatible with living cells. Previously inaccessible questions are now being addressed, and the field of membrane biology is developing rapidly. This chapter discusses how the development of super-resolution microscopy has led to fundamental advances in the field of biological membrane organization. We summarize the history and some models explaining how proteins are organized in cell membranes, and give an overview of various super-resolution techniques and methods of quantifying super-resolution data. We discuss the application of super-resolution techniques to membrane biology in general, and also with specific reference to the fields of actin and actin-binding proteins, virus infection, mitochondria, immune cell biology, and phosphoinositide signaling. Finally, we present our hopes and expectations for the future of super-resolution microscopy in the field of membrane biology.

          Related collections

          Most cited references268

          • Record: found
          • Abstract: not found
          • Article: not found

          The Analysis of Spatial Association by Use of Distance Statistics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.

            Recent advances in far-field fluorescence microscopy have led to substantial improvements in image resolution, achieving a near-molecular resolution of 20 to 30 nanometers in the two lateral dimensions. Three-dimensional (3D) nanoscale-resolution imaging, however, remains a challenge. We demonstrated 3D stochastic optical reconstruction microscopy (STORM) by using optical astigmatism to determine both axial and lateral positions of individual fluorophores with nanometer accuracy. Iterative, stochastic activation of photoswitchable probes enables high-precision 3D localization of each probe, and thus the construction of a 3D image, without scanning the sample. Using this approach, we achieved an image resolution of 20 to 30 nanometers in the lateral dimensions and 50 to 60 nanometers in the axial dimension. This development allowed us to resolve the 3D morphology of nanoscopic cellular structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Far-field optical nanoscopy.

              In 1873, Ernst Abbe discovered what was to become a well-known paradigm: the inability of a lens-based optical microscope to discern details that are closer together than half of the wavelength of light. However, for its most popular imaging mode, fluorescence microscopy, the diffraction barrier is crumbling. Here, I discuss the physical concepts that have pushed fluorescence microscopy to the nanoscale, once the prerogative of electron and scanning probe microscopes. Initial applications indicate that emergent far-field optical nanoscopy will have a strong impact in the life sciences and in other areas benefiting from nanoscale visualization.
                Bookmark

                Author and article information

                Journal
                Curr Top Membr
                Curr Top Membr
                Current Topics in Membranes
                Elsevier Inc.
                1063-5823
                1063-5823
                15 April 2015
                2015
                15 April 2015
                : 75
                : 59-123
                Affiliations
                [1]Department of Physics and Astronomy, University of Maine, Orono, ME, USA
                Author notes
                []Corresponding author: E-mail: sam.hess@umit.maine.edu
                Article
                S1063-5823(15)00009-5
                10.1016/bs.ctm.2015.03.008
                5584789
                26015281
                a36b37c5-f937-4fa2-a9f4-732be40da882
                Copyright © 2015 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                actin,cluster feedback,domain,fpalm,lipid,live cell,palm,raft,review,storm
                actin, cluster feedback, domain, fpalm, lipid, live cell, palm, raft, review, storm

                Comments

                Comment on this article