86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhythmic cognition in humans and animals: distinguishing meter and pulse perception

      research-article
      Frontiers in Systems Neuroscience
      Frontiers Media S.A.
      rhythm, meter, music cognition, cognitive biology, comparative cognition, hierarchy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or “tactus” from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of “strength”, or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g., to dance). Rhythms, from this metrical perspective, constitute “trees in time.” Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques). The results from this animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Sensorimotor synchronization: a review of recent research (2006-2012).

          Sensorimotor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm, ranging from finger tapping in time with a metronome to musical ensemble performance. An earlier review (Repp, 2005) covered tapping studies; two additional reviews (Repp, 2006a, b) focused on music performance and on rate limits of SMS, respectively. The present article supplements and extends these earlier reviews by surveying more recent research in what appears to be a burgeoning field. The article comprises four parts, dealing with (1) conventional tapping studies, (2) other forms of moving in synchrony with external rhythms (including dance and nonhuman animals' synchronization abilities), (3) interpersonal synchronization (including musical ensemble performance), and (4) the neuroscience of SMS. It is evident that much new knowledge about SMS has been acquired in the last 7 years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Towards a neural basis of auditory sentence processing.

            Functional dissociations within the neural basis of auditory sentence processing are difficult to specify because phonological, syntactic and semantic information are all involved when sentences are perceived. In this review I argue that sentence processing is supported by a temporo-frontal network. Within this network, temporal regions subserve aspects of identification and frontal regions the building of syntactic and semantic relations. Temporal analyses of brain activation within this network support syntax-first models because they reveal that building of syntactic structure precedes semantic processes and that these interact only during a later stage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The different roles of social learning in vocal communication.

              While vocal learning has been studied extensively in birds and mammals, little effort has been made to define what exactly constitutes vocal learning and to classify the forms that it may take. We present such a theoretical framework for the study of social learning in vocal communication. We define different forms of social learning that affect communication and discuss the required methodology to show each one. We distinguish between contextual and production learning in animal communication. Contextual learning affects the behavioural context or serial position of a signal. It can affect both usage and comprehension. Production learning refers to instances where the signals themselves are modified in form as a result of experience with those of other individuals. Vocal learning is defined as production learning in the vocal domain. It can affect one or more of three systems: the respiratory, phonatory and filter systems. Each involves a different level of control over the sound production apparatus. We hypothesize that contextual learning and respiratory production learning preceded the evolution of phonatory and filter production learning. Each form of learning potentially increases the complexity of a communication system. We also found that unexpected genetic or environmental factors can have considerable effects on vocal behaviour in birds and mammals and are often more likely to cause changes or differences in vocalizations than investigators may assume. Finally, we discuss how production learning is used in innovation and invention, and present important future research questions. Copyright 2000 The Association for the Study of Animal Behaviour.
                Bookmark

                Author and article information

                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                31 October 2013
                2013
                : 7
                : 68
                Affiliations
                Department of Cognitive Biology, School of Life Sciences, University of Vienna Vienna, Austria
                Author notes

                Edited by: Isabelle Peretz, Université de Montréal, Canada

                Reviewed by: Natasha Sigala, University of Sussex, UK; James W. Grau, Texas A&M University, USA; Bob Ladd, University of Edinburgh, UK

                *Correspondence: W. Tecumseh Fitch, Department of Cognitive Biology, University of Vienna, 14 Althanstrasse, Vienna A-1090, Austria e-mail: tecumseh.fitch@ 123456univie.ac.at

                This article was submitted to the journal Frontiers in Systems Neuroscience.

                Article
                10.3389/fnsys.2013.00068
                3813894
                24198765
                a36cc6b8-15f4-4f05-8fb8-61a218d8d9cd
                Copyright © 2013 Fitch.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 July 2013
                : 29 September 2013
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 142, Pages: 16, Words: 15026
                Categories
                Neuroscience
                Hypothesis and Theory Article

                Neurosciences
                rhythm,meter,music cognition,cognitive biology,comparative cognition,hierarchy
                Neurosciences
                rhythm, meter, music cognition, cognitive biology, comparative cognition, hierarchy

                Comments

                Comment on this article