260
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      G-protein signaling: back to the future

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract.

          Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gα q and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.

          Related collections

          Most cited references308

          • Record: found
          • Abstract: found
          • Article: not found

          The ancient regulatory-protein family of WD-repeat proteins.

          WD proteins are made up of highly conserved repeating units usually ending with Trp-Asp (WD). They are found in all eukaryotes but not in prokaryotes. They regulate cellular functions, such as cell division, cell-fate determination, gene transcription, transmembrane signalling, mRNA modification and vesicle fusion. Here we define the common features of the repeating units, and criteria for grouping such proteins into functional subfamilies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling.

            G protein-coupled receptors (GPCRs) are seven transmembrane proteins that form the largest single family of integral membrane receptors. GPCRs transduce information provided by extracellular stimuli into intracellular second messengers via their coupling to heterotrimeric G proteins and the subsequent regulation of a diverse variety of effector systems. Agonist activation of GPCRs also initiates processes that are involved in the feedback desensitization of GPCR responsiveness, the internalization of GPCRs, and the coupling of GPCRs to heterotrimeric G protein-independent signal transduction pathways. GPCR desensitization occurs as a consequence of G protein uncoupling in response to phosphorylation by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). GRK-mediated receptor phosphorylation promotes the binding of beta-arrestins, which not only uncouple receptors from heterotrimeric G proteins but also target many GPCRs for internalization in clathrin-coated vesicles. beta-Arrestin-dependent endocytosis of GPCRs involves the direct interaction of the carboxyl-terminal tail domain of beta-arrestins with both beta-adaptin and clathrin. The focus of this review is the current and evolving understanding of the contribution of GRKs, beta-arrestins, and endocytosis to GPCR-specific patterns of desensitization and resensitization. In addition to their role as GPCR-specific endocytic adaptor proteins, beta-arrestins also serve as molecular scaffolds that foster the formation of alternative, heterotrimeric G protein-independent signal transduction complexes. Similar to what is observed for GPCR desensitization and resensitization, beta-arrestin-dependent GPCR internalization is involved in the intracellular compartmentalization of these protein complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins.

              GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on G subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins (phospholipase C-¿, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with G¿ or with G¿5 through an endogenous G-like domain, and by interaction with multiple other proteins.
                Bookmark

                Author and article information

                Contributors
                +1 919 966 5640 , dsiderov@med.unc.edu
                Journal
                Cell Mol Life Sci
                Cellular and Molecular Life Sciences
                Birkhäuser-Verlag (Basel )
                1420-682X
                1420-9071
                March 2005
                : 62
                : 5
                : 551-577
                Affiliations
                Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, 1106 Mary Ellen Jones Building, Chapel Hill, North Carolina 27599-7365 USA
                Article
                4462
                10.1007/s00018-004-4462-3
                2794341
                15747061
                a37355a9-880f-4892-b408-341686e9b359
                © Birkhäuser Verlag, Basel 2005
                History
                Categories
                Review
                Custom metadata
                © Birkhäuser Verlag, Basel 2005

                Molecular biology
                g-protein,phospholipase c,goloco motif,rgs proteins,asymmetric cell division
                Molecular biology
                g-protein, phospholipase c, goloco motif, rgs proteins, asymmetric cell division

                Comments

                Comment on this article