15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue-Infiltrating Neutrophils Constitute the Major In Vivo Source of Angiogenesis-Inducing MMP-9 in the Tumor Microenvironment 1 2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to established notion, one of the major angiogenesis-inducing factors, pro-matrix metalloproteinase-9 (proMMP-9), is supplied to the tumor microenvironment by tumor-associated macrophages (TAMs). Accumulated evidence, however, indicates that tumor-associated neutrophils (TANs) are also critically important for proMMP-9 delivery, especially at early stages of tumor development. To clarify how much angiogenic proMMP-9 is actually contributed by TAMs and TANs, we quantitatively evaluated TAMs and TANs from different tumor types, including human xenografts and syngeneic murine tumors grown in wild-type and Mmp9-knockout mice. Whereas host MMP-9 competence was required for full angiogenic potential of both normal and tumor-associated leukocytes, direct comparisons of neutrophils versus macrophages and TANs versus TAMs demonstrated that macrophages and TAMs secrete 40- to 50-fold less proMMP-9 than the same numbers of neutrophils or TANs. Correspondingly, the levels of MMP-9–mediated in vivo angiogenesis induced by neutrophils and TANs substantially exceeded those induced by macrophages and TAMs. MMP-9–delivering TANs were also required for development of metastasis-supporting intratumoral vasculature, characterized by ≥ 11-μm size lumens and partial coverage with stabilizing pericytes. Importantly, MMP-9–producing TAMs exhibit M2-skewed phenotype but do not express tissue inhibitor of metalloproteinases-1 (TIMP-1), a novel characteristic allowing them to secrete TIMP-1–free, neutrophil-like MMP-9 zymogen unencumbered by its natural inhibitor. Together, our findings support the notion whereby TANs, capable of immediate release of their pre-stored cargo, are the major contributors of highly angiogenic MMP-9, whereas tumor-influxing precursors of macrophages require time to differentiate, polarize into M2-skewed TAMs, shut down their TIMP-1 expression, and only then, initiate relatively low-level production of TIMP-free MMP-9 zymogen.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage regulation of tumor responses to anticancer therapies.

          Tumor-associated macrophages (TAMs) promote key processes in tumor progression, like angiogenesis, immunosuppression, invasion, and metastasis. Increasing studies have also shown that TAMs can either enhance or antagonize the antitumor efficacy of cytotoxic chemotherapy, cancer-cell targeting antibodies, and immunotherapeutic agents--depending on the type of treatment and tumor model. TAMs also drive reparative mechanisms in tumors after radiotherapy or treatment with vascular-targeting agents. Here, we discuss the biological significance and clinical implications of these findings, with an emphasis on novel approaches that effectively target TAMs to increase the efficacy of such therapies. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis.

            Matrix metalloprotease type 9 (MMP-9) has been functionally implicated in VEGF activation, the induction and maintenance of chronic angiogenesis, and early stage tumor growth in a number of mouse models of cancer. In this article, we have identified two inflammatory cell types that are major sources of MMP-9 in the angiogenic stages of pancreatic islet carcinogenesis that unfold in RIP1-Tag2 transgenic mice. MMP-9-expressing neutrophils were predominantly found inside angiogenic islet dysplasias and tumors, whereas MMP-9-expressing macrophages were localized along the periphery of such lesions. Transient depletion of neutrophils significantly suppressed VEGF:VEGF-receptor association, a signature of MMP-9 activity, and markedly reduced the frequency of initial angiogenic switching in dysplasias. Thus infiltrating neutrophils can play a crucial role in activating angiogenesis in a previously quiescent tissue vasculature during the early stages of carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.

              The matrix metalloproteinase MMP-9/gelatinase B is upregulated in angiogenic dysplasias and invasive cancers of the epidermis in a mouse model of multi-stage tumorigenesis elicited by HPV16 oncogenes. Transgenic mice lacking MMP-9 show reduced keratinocyte hyperproliferation at all neoplastic stages and a decreased incidence of invasive tumors. Yet those carcinomas that do arise in the absence of MMP-9 exhibit a greater loss of keratinocyte differentiation, indicative of a more aggressive and higher grade tumor. Notably, MMP-9 is predominantly expressed in neutrophils, macrophages, and mast cells, rather than in oncogene-positive neoplastic cells. Chimeric mice expressing MMP-9 only in cells of hematopoietic origin, produced by bone marrow transplantation, reconstitute the MMP-9-dependent contributions to squamous carcinogenesis. Thus, inflammatory cells can be coconspirators in carcinogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neoplasia
                Neoplasia
                Neoplasia (New York, N.Y.)
                Neoplasia Press
                1522-8002
                1476-5586
                23 October 2014
                October 2014
                23 October 2014
                : 16
                : 10
                : 771-788
                Affiliations
                Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
                Author notes
                [* ]Address all correspondence to: E. Deryugina, PhD and J. Quigley, PhD, Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. deryugin@ 123456scripps.edu jquigley@ 123456scripps.edu
                Article
                S1476-5586(14)00119-5
                10.1016/j.neo.2014.08.013
                4212255
                25379015
                a3737b62-4ea3-4373-b124-604ab37039f4
                © 2014 Neoplasia Press, Inc. Published by Elsevier Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 12 July 2014
                : 20 August 2014
                : 20 August 2014
                Categories
                Article

                bm, bone marrow,bmd, bone marrow–derived,cm, conditioned medium,il, interleukin,ko, knockout,m-csf, macrophage colony-stimulating factor,mmp, matrix metalloproteinase,pb, peripheral blood,pbd, peripheral blood–derived,tam, tumor-associated macrophage,tan, tumor-associated neutrophil,timp, tissue inhibitor of metalloproteinases

                Comments

                Comment on this article