9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Pharmacokinetics and Pharmacodynamics of Dalcetrapib

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cholesterol ester transfer protein (CETP) inhibitor dalcetrapib has been under evaluation for its potential to prevent cardiovascular (CV) events for almost two decades. The current clinical development program, representing new advances in precision medicine and focused on a genetically defined population with acute coronary syndrome (ACS), is supported by a large body of pharmacokinetic and pharmacodynamic data as well as substantial clinical experience in over 13,000 patients and volunteers. Dalcetrapib treatment of 600 mg/day produces significant inhibition of CETP activity, and has been utilized in phase II and III studies, including CV endpoint trials. Numerous studies have investigated the interactions between dalcetrapib and most drugs commonly prescribed to CV patients and have not demonstrated any clinically significant effects. Evaluations in patients with renal and hepatic impairment demonstrate a greater exposure to dalcetrapib than in the non-impaired population, but long-term clinical studies including patients with mild to moderate hepatic and renal dysfunction demonstrate no increase in adverse events. Safety pharmacology and toxicology studies as well as the clinical safety experience support the continuing development of dalcetrapib as an adjunct to ‘standard of care’ for the ACS population. This article provides a full review of the pharmacokinetics, as well as pharmacodynamics and pharmacology, of dalcetrapib in the context of a large clinical program.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors

          Subnormal plasma levels of high-density lipoprotein cholesterol (HDL-C) constitute a major cardiovascular risk factor; raising low HDL-C levels may therefore reduce the residual cardiovascular risk that frequently presents in dyslipidaemic subjects despite statin therapy. Cholesteryl ester transfer protein (CETP), a key modulator not only of the intravascular metabolism of HDL and apolipoprotein (apo) A-I but also of triglyceride (TG)-rich particles and low-density lipoprotein (LDL), mediates the transfer of cholesteryl esters from HDL to pro-atherogenic apoB-lipoproteins, with heterotransfer of TG mainly from very low-density lipoprotein to HDL. Cholesteryl ester transfer protein activity is elevated in the dyslipidaemias of metabolic disease involving insulin resistance and moderate to marked hypertriglyceridaemia, and is intimately associated with premature atherosclerosis and high cardiovascular risk. Cholesteryl ester transfer protein inhibition therefore presents a preferential target for elevation of HDL-C and reduction in atherosclerosis. This review appraises recent evidence for a central role of CETP in the action of current lipid-modulating agents with HDL-raising potential, i.e. statins, fibrates, and niacin, and compares their mechanisms of action with those of pharmacological agents under development which directly inhibit CETP. New CETP inhibitors, such as dalcetrapib and anacetrapib, are targeted to normalize HDL/apoA-I levels and anti-atherogenic activities of HDL particles. Further studies of these CETP inhibitors, in particular in long-term, large-scale outcome trials, will provide essential information on their safety and efficacy in reducing residual cardiovascular risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits.

            Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL). This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic. On the other hand, CETP could also be anti-atherogenic, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver). Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacogenomic determinants of the cardiovascular effects of dalcetrapib.

              Dalcetrapib did not improve clinical outcomes, despite increasing high-density lipoprotein cholesterol by 30%. These results differ from other evidence supporting high-density lipoprotein as a therapeutic target. Responses to dalcetrapib may vary according to patients' genetic profile.
                Bookmark

                Author and article information

                Contributors
                Dblack@dalcorpharma.com
                Journal
                Clin Pharmacokinet
                Clin Pharmacokinet
                Clinical Pharmacokinetics
                Springer International Publishing (Cham )
                0312-5963
                1179-1926
                5 May 2018
                5 May 2018
                2018
                : 57
                : 11
                : 1359-1367
                Affiliations
                [1 ]Dalcor Pharmaceuticals UK Limited, 123 Wellington Road South, Stockport, Cheshire SK1 3TH UK
                [2 ]ISNI 0000 0004 0374 1269, GRID grid.417570.0, F. Hoffmann-LaRoche Ltd, ; Basel, Switzerland
                [3 ]A2PG, Ann Arbor, Michigan USA
                Article
                656
                10.1007/s40262-018-0656-3
                6182459
                29730761
                a37d4788-9c21-488a-85c8-b7f40f1e6186
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                Categories
                Review Article
                Custom metadata
                © Springer Nature Switzerland AG 2018

                Comments

                Comment on this article