12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3 000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.

          Graphical abstract

          Highlights

          • South Africa is the largest agrochemical user in sub-Saharan Africa.

          • Studies have reported pesticides in surface-, ground- and drinking water.

          • ED effects associated with legacy OCPs have been reported in wildlife species.

          • ED effects of many current-use pesticides in South Africa are unknown.

          • Agrochemicals in watercourses pose a threat to the country’s biodiversity.

          Abstract

          Capsule: The South African freshwater environment is severely polluted with agrochemicals which pose toxicological risks, such as endocrine disruption, to aquatic wildlife species.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

          Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already approved pesticides and the approval of the new compounds in the near future. Thus, new tools or techniques with greater reliability than those already existing are needed to predict the potential hazards of pesticides and thus contribute to reduction of the adverse effects on human health and the environment. On the other hand, the implementation of alternative cropping systems that are less dependent on pesticides, the development of new pesticides with novel modes of action and improved safety profiles, and the improvement of the already used pesticide formulations towards safer formulations (e.g., microcapsule suspensions) could reduce the adverse effects of farming and particularly the toxic effects of pesticides. In addition, the use of appropriate and well-maintained spraying equipment along with taking all precautions that are required in all stages of pesticide handling could minimize human exposure to pesticides and their potential adverse effects on the environment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Worldwide pesticide usage and its impacts on ecosystem

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment

              Organochlorine (OC) pesticides are synthetic pesticides widely used all over the world. They belong to the group of chlorinated hydrocarbon derivatives, which have vast application in the chemical industry and in agriculture. These compounds are known for their high toxicity, slow degradation and bioaccumulation. Even though many of the compounds which belong to OC were banned in developed countries, the use of these agents has been rising. This concerns particularly abuse of these chemicals which is in practice across the continents. Though pesticides have been developed with the concept of target organism toxicity, often non-target species are affected badly by their application. The purpose of this review is to list the major classes of pesticides, to understand organochlorine pesticides based on their activity and persistence, and also to understand their biochemical toxicity.
                Bookmark

                Author and article information

                Journal
                Environ Pollut
                Environ. Pollut
                Environmental Pollution (Barking, Essex : 1987)
                Elsevier Ltd.
                0269-7491
                1873-6424
                24 September 2020
                24 September 2020
                : 115718
                Affiliations
                [a ]Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
                Author notes
                []Corresponding author, Ilzé Horak, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
                Article
                S0269-7491(20)36407-1 115718
                10.1016/j.envpol.2020.115718
                7513804
                33035912
                a37ef23e-a80c-4b67-b047-5dbcfbcffaa8
                © 2020 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 20 August 2020
                : 20 September 2020
                : 21 September 2020
                Categories
                Review

                General environmental science
                agriculture,freshwater,organochlorine pesticides,ddt,oestrogenic activity,intersex

                Comments

                Comment on this article