6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of human liver cytochrome P4503A in the metabolism of etoricoxib, a novel cyclooxygenase-2 selective inhibitor.

      Drug metabolism and disposition: the biological fate of chemicals
      Animals, Cell Line, Cyclooxygenase 2, Cyclooxygenase 2 Inhibitors, Cyclooxygenase Inhibitors, pharmacokinetics, Cytochrome P-450 Enzyme Inhibitors, Cytochrome P-450 Enzyme System, metabolism, DNA, Complementary, Humans, Isoenzymes, antagonists & inhibitors, drug effects, Male, Membrane Proteins, Microsomes, Liver, enzymology, Prostaglandin-Endoperoxide Synthases, Pyridines, Sulfones

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Etoricoxib, a potent and selective cyclooxygenase-2 inhibitor, was shown to be metabolized via 6'-methylhydroxylation (M2 formation) when incubated with NADPH-fortified human liver microsomes. In agreement with in vivo data, 1'-N'-oxidation was a relatively minor pathway. Over the etoricoxib concentration range studied (1-1300 microM), the rate of hydroxylation conformed to saturable Michaelis-Menten kinetics (apparent K(m) = 186 +/- 84.3 microM; V(max) = 0.76 +/- 0.45 nmol/min/mg of protein; mean +/- S.D., n = 3 livers) and yielded a V(max)/K(m) ratio of 2.4 to 7.3 microl/min/mg. This in vitro V(max)/K(m) ratio was scaled, with respect to yield of liver microsomal protein and liver weight, to obtain estimates of M2 formation clearance (3.1-9.7 ml/min/kg of b.wt.) that agreed favorably with in vivo results (8.3 ml/min/kg of b.wt.) following i.v. administration of [(14)C]etoricoxib to healthy male subjects. Cytochrome P450 (P450) reaction phenotyping studies-using P450 form selective chemical inhibitors, immunoinhibitory antibodies, recombinant P450s, and correlation analysis with microsomes prepared from a bank of human livers-revealed that the 6'-methyl hydroxylation of etoricoxib was catalyzed largely (approximately 60%) by member(s) of the CYP3A subfamily. By comparison, CYP2C9 (approximately 10%), CYP2D6 (approximately 10%), CYP1A2 (approximately 10%), and possibly CYP2C19 played an ancillary role. Moreover, etoricoxib (0.1-100 microM) was found to be a relatively weak inhibitor (IC(50) > 100 microM) of multiple P450s (CYP1A2, CYP2D6, CYP3A, CYP2E1, CYP2C9, and CYP2C19) in human liver microsomes.

          Related collections

          Author and article information

          Comments

          Comment on this article