86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimising physiochemical control of invasive Japanese knotweed

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Lessons learned from invasive plant control experiments: a systematic review and meta-analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The current status and environmental impacts of glyphosate-resistant crops: a review.

              Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.
                Bookmark

                Author and article information

                Journal
                Biological Invasions
                Biol Invasions
                Springer Nature
                1387-3547
                1573-1464
                April 23 2018
                Article
                10.1007/s10530-018-1684-5
                a3957b00-ae4e-445d-a3e4-c04c48c2a178
                © 2018

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article