110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Do Deep Neural Networks Learn Facial Action Units When Doing Expression Recognition?

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite being the appearance-based classifier of choice in recent years, relatively few works have examined how much convolutional neural networks (CNNs) can improve performance on accepted expression recognition benchmarks and, more importantly, examine what it is they actually learn. In this work, not only do we show that CNNs can achieve strong performance, but we also introduce an approach to decipher which portions of the face influence the CNN's predictions. First, we train a zero-bias CNN on facial expression data and achieve, to our knowledge, state-of-the-art performance on two expression recognition benchmarks: the extended Cohn-Kanade (CK+) dataset and the Toronto Face Dataset (TFD). We then qualitatively analyze the network by visualizing the spatial patterns that maximally excite different neurons in the convolutional layers and show how they resemble Facial Action Units (FAUs). Finally, we use the FAU labels provided in the CK+ dataset to verify that the FAUs observed in our filter visualizations indeed align with the subject's facial movements.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic texture recognition using local binary patterns with an application to facial expressions.

          Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Facial expression recognition based on Local Binary Patterns: A comprehensive study

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Automatic classification of single facial images

                Bookmark

                Author and article information

                Comments

                Comment on this article