7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons

      , , , ,
      Nanoscale
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Two-Dimensional Gas of Massless Dirac Fermions in Graphene

            Electronic properties of materials are commonly described by quasiparticles that behave as non-relativistic electrons with a finite mass and obey the Schroedinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective "speed of light" c* ~10^6m/s. Our studies of graphene - a single atomic layer of carbon - have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at half-integer filling factors; b) graphene's conductivity never falls below a minimum value corresponding to the conductance quantum e^2/h, even when carrier concentrations tend to zero; c) the cyclotron mass m of massless carriers with energy E in graphene is described by equation E =mc*^2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of pi due to Berry's phase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

              When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal realization of such a 2D system. Here, we report an experimental investigation of magneto transport in a high mobility single layer of graphene. Adjusting the chemical potential using the electric field effect, we observe an unusual half integer QHE for both electron and hole carriers in graphene. Vanishing effective carrier masses is observed at Dirac point in the temperature dependent Shubnikov de Haas oscillations, which probe the 'relativistic' Dirac particle-like dispersion. The relevance of Berry's phase to these experiments is confirmed by the phase shift of magneto-oscillations, related to the exceptional topology of the graphene band structure.
                Bookmark

                Author and article information

                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                2011
                2011
                : 3
                : 10
                : 4330
                Article
                10.1039/c1nr10594a
                a3a68a7a-3a05-408f-8aee-928c96f5510b
                © 2011
                History

                Comments

                Comment on this article