24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Overview of the Proton-coupled MCT (SLC16A) Family of Transporters: Characterization, Function and Role in the Transport of the Drug of Abuse γ-Hydroxybutyric Acid

      research-article
      ,
      The AAPS Journal
      Springer US
      butyrate, gamma-hydroxybutyrate, lactate, monocarboxylate transporters, SLC16A

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs). Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been functionally characterized. Despite their sequence homology, only MCT1–4 have been demonstrated to be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1–4 vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates, MCTs are involved in the transport of pharmaceutical agents, including γ-hydroxybuytrate (GHB), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide. MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such they have the potential to impact a number of processes contributing to the disposition of xenobiotic substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant administration of GHB and l-lactate to rats results in an approximately two-fold increase in GHB renal clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective strategy for increasing renal and total GHB elimination in overdose situations. Further studies are required to more clearly define the role of MCTs on drug disposition and the potential for MCT-mediated detoxification strategies in GHB overdose.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond.

          The monocarboxylate cotransporter (MCT) family now comprises 14 members, of which only the first four (MCT1-MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monocarboxylates such as lactate, pyruvate and ketone bodies. SLC16A10 (T-type amino-acid transporter-1, TAT1) is an aromatic amino acid transporter whilst the other members await characterization. MCTs have 12 transmembrane domains (TMDs) with intracellular N- and C-termini and a large intracellular loop between TMDs 6 and 7. MCT1 and MCT4 require a monotopic ancillary protein, CD147, for expression of functional protein at the plasma membrane. Lactic acid transport across the plasma membrane is fundamental for the metabolism of and pH regulation of all cells, removing lactic acid produced by glycolysis and allowing uptake by those cells utilizing it for gluconeogenesis (liver and kidney) or as a respiratory fuel (heart and red muscle). The properties of the different MCT isoforms and their tissue distribution and regulation reflect these roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression.

            CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Monocarboxylate transporters in the central nervous system: distribution, regulation and function.

              Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.
                Bookmark

                Author and article information

                Contributors
                +1-716-6452842 , +1-716-6453693 , memorris@buffalo.edu
                Journal
                AAPS J
                The AAPS Journal
                Springer US (Boston )
                1550-7416
                4 June 2008
                4 June 2008
                June 2008
                : 10
                : 2
                : 311-321
                Affiliations
                Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260 USA
                Article
                9035
                10.1208/s12248-008-9035-6
                2574616
                18523892
                a3a6a527-3bd8-4e77-aff3-2b5dd189bf2c
                © American Association of Pharmaceutical Scientists 2008
                History
                : 4 March 2008
                : 1 April 2008
                Categories
                Review Article/Themed Issue: Mono/Guest Editor: M. Morris
                Custom metadata
                © American Association of Pharmaceutical Scientists 2008

                Pharmacology & Pharmaceutical medicine
                gamma-hydroxybutyrate,slc16a,monocarboxylate transporters,lactate,butyrate

                Comments

                Comment on this article