11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analysis of the curry tree ( Bergera koenigii L., Rutaceae) during leaf development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The curry tree ( Bergera koenigii L.) is a widely cultivated plant used in South Asian cooking. Next-generation sequencing was used to generate the transcriptome of the curry leaf to detect changes in gene expression during leaf development, such as those genes involved in the production of oils which lend the leaf its characteristic taste, aroma, and medicinal properties. Using abundance estimation (RSEM) and differential expression analysis, genes that were significantly differentially expressed were identified. The transcriptome was annotated with BLASTx using the non-redundant (nr) protein database, and Gene Ontology (GO) terms were assigned based on the top BLAST hit using Blast2GO. Lastly, functional enrichment of the assigned GO terms was analyzed for genes that were significantly differentially expressed. Of the most enriched GO categories, pathways involved in cell wall, membrane, and lignin synthesis were found to be most upregulated in immature leaf tissue, possibly due to the growth and expansion of the leaf tissue. Terpene synthases, which synthesize monoterpenes and sesquiterpenes, which comprise much of the curry essential oil, were found to be significantly upregulated in mature leaf tissue, suggesting that oil production increases later in leaf development. Enzymes involved in pigment production were also significantly upregulated in mature leaves. The findings were based on computational estimates of gene expression from RNA-seq data, and further study is warranted to validate these results using targeted techniques, such as quantitative PCR.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Terpene synthases and the regulation, diversity and biological roles of terpene metabolism.

            Terpene synthases are the primary enzymes in the formation of low-molecular-weight terpene metabolites. Rapid progress in the biochemical and molecular analysis of terpene synthases has allowed significant investigations of their evolution, structural and mechanistic properties, and regulation. The organization of terpene synthases in large gene families, their characteristic ability to form multiple products, and their spatial and temporal regulation during development and in response to biotic and abiotic factors contribute to the time-variable formation of a diverse group of terpene metabolites. The structural diversity and complexity of terpenes generates an enormous potential for mediating plant-environment interactions. Engineering the activities of terpene synthases provides opportunities for detailed functional evaluations of terpene metabolites in planta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An RNA isolation system for plant tissues rich in secondary metabolites

              Background Secondary metabolites are reported to interfere with the isolation of RNA particularly with the recipes that use guanidinium-based salt. Such interference was observed in isolation of RNA with medicinal plants rheum (Rheum australe) and arnebia (Arnebia euchroma). A rapid and less cumbersome system for isolation of RNA was essential to facilitate any study related to gene expression. Findings An RNA isolation system free of guanidinium salt was developed that successfully isolated RNA from rheum and arnebia. The method took about 45 min and was successfully evaluated on twenty one tissues with varied secondary metabolites. The A 260/280 ratio ranged between 1.8 - 2.0 with distinct 28 S and 18 S rRNA bands visible on a formaldehyde-agarose gel. Conclusions The present manuscript describes a rapid protocol for isolation of RNA, which works well with all the tissues examined so far. The remarkable feature was the success in isolation of RNA with those tissues, wherein the most commonly used methods failed. Isolated RNA was amenable to downstream applications such as reverse transcription-polymerase chain reaction (RT-PCR), differential display (DD), suppression subtractive hybridization (SSH) library construction, and northern hybridization.
                Bookmark

                Author and article information

                Contributors
                vshiv@berkeley.edu
                zimmerl@si.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                12 March 2019
                12 March 2019
                2019
                : 9
                : 4230
                Affiliations
                [1 ]ISNI 0000 0001 2192 7591, GRID grid.453560.1, Department of Botany and Laboratories of Analytical Biology, , National Museum of Natural History, Smithsonian Institution, ; PO Box 37012, Washington, DC 20013-7012 USA
                [2 ]Thomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria, VA 22312 USA
                Article
                40227
                10.1038/s41598-019-40227-z
                6414593
                30862864
                a3ad8008-f468-4cc1-9b33-59d02055b5a1
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 June 2017
                : 1 February 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article