29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians ( i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Wound healing--aiming for perfect skin regeneration.

          P. Martin (1997)
          The healing of an adult skin wound is a complex process requiring the collaborative efforts of many different tissues and cell lineages. The behavior of each of the contributing cell types during the phases of proliferation, migration, matrix synthesis, and contraction, as well as the growth factor and matrix signals present at a wound site, are now roughly understood. Details of how these signals control wound cell activities are beginning to emerge, and studies of healing in embryos have begun to show how the normal adult repair process might be readjusted to make it less like patching up and more like regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate.

            The limb blastemal cells of an adult salamander regenerate the structures distal to the level of amputation, and the surface protein Prod 1 is a critical determinant of their proximodistal identity. The anterior gradient protein family member nAG is a secreted ligand for Prod 1 and a growth factor for cultured newt blastemal cells. nAG is sequentially expressed after amputation in the regenerating nerve and the wound epidermis-the key tissues of the stem cell niche-and its expression in both locations is abrogated by denervation. The local expression of nAG after electroporation is sufficient to rescue a denervated blastema and regenerate the distal structures. Our analysis brings together the positional identity of the blastema and the classical nerve dependence of limb regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.

              In man and domestic animals, scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in adverse aesthetics, loss of function, restriction of tissue movement and/or growth and adverse psychological effects. Current treatments are empirical, unreliable and unpredictable: there are no prescription drugs for the prevention or treatment of dermal scarring. Skin wounds on early mammalian embryos heal perfectly with no scars whereas wounds to adult mammals scar. We investigated the cellular and molecular differences between scar-free healing in embryonic wounds and scar-forming healing in adult wounds. Important differences include the inflammatory response, which in embryonic wounds consists of lower numbers of less differentiated inflammatory cells. This, together with high levels of morphogenetic molecules involved in skin growth and morphogenesis, means that the growth factor profile in a healing embryonic wound is very different from that in an adult wound. Thus, embryonic wounds that heal without a scar have low levels of TGFbeta1 and TGFbeta2, low levels of platelet-derived growth factor and high levels of TGFbeta3. We have experimentally manipulated healing adult wounds in mice, rats and pigs to mimic the scar-free embryonic profile, e.g. neutralizing PDGF, neutralizing TGFbeta1 and TGFbeta2 or adding exogenous TGFbeta3. These experiments result in scar-free wound healing in the adult. Such experiments have allowed the identification of therapeutic targets to which we have developed novel pharmaceutical molecules, which markedly improve or completely prevent scarring during adult wound healing in experimental animals. Some of these new drugs have successfully completed safety and other studies, such that they have entered human clinical trials with approval from the appropriate regulatory authorities. Initial trials involve application of the drug or placebo in a double-blind randomized design, to experimental incision or punch biopsy wounds under the arms of human volunteers. Based on encouraging results from such human volunteer studies, the lead drugs have now entered human patient-based trials e.g. in skin graft donor sites. We consider the evolutionary context of wound healing, scarring and regeneration. We hypothesize that evolutionary pressures have been exerted on intermediate sized, widespread, dirty wounds with considerable tissue damage e.g. bites, bruises and contusions. Modem wounds (e.g. resulting from trauma or surgery) caused by sharp objects and healing in a clean or sterile environment with close tissue apposition are new occurrences, not previously encountered in nature and to which the evolutionary selected wound healing responses are somewhat inappropriate. We also demonstrate that both repair with scarring and regeneration can occur within the same animal, including man, and indeed within the same tissue, thereby suggesting that they share similar mechanisms and regulators. Consequently, by subtly altering the ratio of growth factors present during adult wound healing, we can induce adult wounds to heal perfectly with no scars, with accelerated healing and with no adverse effects, e.g. on wound strength or wound infection rates. This means that scarring may no longer be an inevitable consequence of modem injury or surgery and that a completely new pharmaceutical approach to the prevention of human scarring is now possible. Scarring after injury occurs in many tissues in addition to the skin. Thus scar-improving drugs could have widespread benefits and prevent complications in several tissues, e.g. prevention of blindness after scarring due to eye injury, facilitation of neuronal reconnections in the central and peripheral nervous system by the elimination of glial scarring, restitution of normal gut and reproductive function by preventing strictures and adhesions after injury to the gastrointestinal or reproductive systems, and restoration of locomotor function by preventing scarring in tendons and ligaments.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                18 March 2013
                : 8
                : 3
                : e59105
                Affiliations
                [1 ]The Laboratory of Molecular Pathology, Stem Cell Research Center, Children’s Hospital of UPMC, Pittsburgh, Pennsylvania, United States of America
                [2 ]Department of Orthopaedic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania, United States of America
                [3 ]Department of Bioengineering, University of Pittsburgh, Pennsylvania, United States of America
                [4 ]Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas, United States of America
                [5 ]Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
                University of Kansas Medical Center, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XM YL. Performed the experiments: XM IB HP. Analyzed the data: XM IB. Contributed reagents/materials/analysis tools: XM HP. Wrote the paper: XM YC YL.

                Article
                PONE-D-12-36238
                10.1371/journal.pone.0059105
                3601098
                23527099
                a3b449ee-a452-4e90-88c0-236b28ba8157
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 November 2012
                : 11 February 2013
                Page count
                Pages: 8
                Funding
                This study was partially support from NIH and DOD grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Biochemistry
                Cytochemistry
                Extracellular Matrix
                Developmental Biology
                Morphogenesis
                Regeneration
                Stem Cells
                Adult Stem Cells
                Stem Cell Niche
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Cellular Types
                Stem Cells
                Adult Stem Cells
                Stem Cell Niche
                Connective Tissue Cells
                Extracellular Matrix
                Connective Tissue
                Medicine

                Uncategorized
                Uncategorized

                Comments

                Comment on this article