22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotective effects of blockers for T-type calcium channels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cognitive and functional decline with age is correlated with deregulation of intracellular calcium, which can lead to neuronal death in the brain. Previous studies have found protective effects of various calcium channel blockers in pathological conditions. However, little has been done to explore possible protective effects of blockers for T-type calcium channels, which forms a family of FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-voltage activated, or T-type calcium channels, comprise of three members (Ca v3.1, Ca v3.2, and Ca v3.3) based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. Among these three subunits, α1H is highly expressed in hippocampus and certain cortical regions. However, T-type calcium channel blockers can protect neurons derived from α1H-/- mice, suggesting that neuroprotection demonstrated by these drugs is not through the α1H subunit. In addition, blockers for T-type calcium channels were not able to confer any protection to neurons in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data indicate a new function of blockers for T-type calcium channels, and also suggest different mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have important implications in the development of new treatment for age-related neurodegenerative disorders.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular physiology of low-voltage-activated t-type calcium channels.

          T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels.

            Low voltage-activated (T-type) calcium currents are observed in many central and peripheral neurons and display distinct physiological and functional properties. Using in situ hybridization, we have localized central and peripheral nervous system expression of three transcripts (alpha1G, alpha1H, and alpha1I) of the T-type calcium channel family (CaVT). Each mRNA demonstrated a unique distribution, and expression of the three genes was largely complementary. We found high levels of expression of these transcripts in regions associated with prominent T-type currents, including inferior olivary and thalamic relay neurons (which expressed alpha1G), sensory ganglia, pituitary, and dentate gyrus granule neurons (alpha1H), and thalamic reticular neurons (alpha1I and alpha1H). Other regions of high expression included the Purkinje cell layer of the cerebellum, the bed nucleus of the stria terminalis, the claustrum (alpha1G), the olfactory tubercles (alpha1H and alpha1I), and the subthalamic nucleus (alpha1I and alpha1G). Some neurons expressed high levels of all three genes, including hippocampal pyramidal neurons and olfactory granule cells. Many brain regions showed a predominance of labeling for alpha1G, including the amygdala, cerebral cortex, rostral hypothalamus, brainstem, and spinal cord. Exceptions included the basal ganglia, which showed more prominent labeling for alpha1H and alpha1I, and the olfactory bulb, the hippocampus, and the caudal hypothalamus, which showed more even levels of all three transcripts. Our results are consistent with the hypothesis that differential gene expression underlies pharmacological and physiological heterogeneity observed in neuronal T-type calcium currents, and they provide a molecular basis for the study of T-type channels in particular neurons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: minding the store

              Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+ transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca2+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.
                Bookmark

                Author and article information

                Journal
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central
                1750-1326
                2009
                28 October 2009
                : 4
                : 44
                Affiliations
                [1 ]Department of Otolaryngology, Center for Aging, Washington University, 4560 Clayton Avenue, St Louis, MO 63110, USA
                Article
                1750-1326-4-44
                10.1186/1750-1326-4-44
                2774686
                19863782
                a3bb1544-e9d4-445c-bf2f-59a4fda19aaa
                Copyright © 2009 Wildburger et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 August 2009
                : 28 October 2009
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article