19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SmithRNAs: Could Mitochondria “Bend” Nuclear Regulation?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Typically, animal mitochondria have very compact genomes, with few short intergenic regions, and no introns. Hence, it may seem that there is little space for unknown functions in mitochondrial DNA (mtDNA). However, mtDNA can also operate through RNA interference, as small non coding RNAs (sncRNAs) produced by mtDNA have already been proposed for humans. We sequenced sncRNA libraries from isolated mitochondria of Ruditapes philippinarum (Mollusca Bivalvia) gonads, a species with doubly uniparental inheritance of mitochondria, and identified several putative sncRNAs of mitochondrial origin. Some sncRNAs are transcribed by intergenic regions that form stable stem-hairpin structures, which makes them good miRNA-like candidates. We decided to name them small mitochondrial highly-transcribed RNAs (smithRNAs). Many concurrent data support that we have recovered sncRNAs of mitochondrial origin that might be involved in gonad formation and able to affect nuclear gene expression. This possibility has been never suggested before. If mtDNA can affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for it to interact with the nucleus, and makes metazoan mtDNA a much more complex genome than previously thought.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of mammalian microRNA targets.

          MicroRNAs (miRNAs) can play important gene regulatory roles in nematodes, insects, and plants by basepairing to mRNAs to specify posttranscriptional repression of these messages. However, the mRNAs regulated by vertebrate miRNAs are all unknown. Here we predict more than 400 regulatory target genes for the conserved vertebrate miRNAs by identifying mRNAs with conserved pairing to the 5' region of the miRNA and evaluating the number and quality of these complementary sites. Rigorous tests using shuffled miRNA controls supported a majority of these predictions, with the fraction of false positives estimated at 31% for targets identified in human, mouse, and rat and 22% for targets identified in pufferfish as well as mammals. Eleven predicted targets (out of 15 tested) were supported experimentally using a HeLa cell reporter system. The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinesin superfamily motor proteins and intracellular transport.

            Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Purification of RNA using TRIzol (TRI reagent).

              TRIzol solubilization and extraction is a relatively recently developed general method for deproteinizing RNA. This method is particularly advantageous in situations where cells or tissues are enriched for endogenous RNases or when separation of cytoplasmic RNA from nuclear RNA is impractical. TRIzol (or TRI Reagent) is a monophasic solution of phenol and guanidinium isothiocyanate that simultaneously solubilizes biological material and denatures protein. After solubilization, the addition of chloroform causes phase separation (much like extraction with phenol:chloroform:isoamyl alcohol), where protein is extracted to the organic phase, DNA resolves at the interface, and RNA remains in the aqueous phase. Therefore, RNA, DNA, and protein can be purified from a single sample (hence, the name TRIzol). TRIzol extraction is also an effective method for isolating small RNAs, such as microRNAs, piwi-associated RNAs, or endogeneous, small interfering RNAs. However, TRIzol is expensive and RNA pellets can be difficult to resuspend. Thus, the use of TRIzol is not recommend when regular phenol extraction is practical.
                Bookmark

                Author and article information

                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                August 2017
                21 April 2017
                21 April 2017
                : 34
                : 8
                : 1960-1973
                Affiliations
                [1 ]Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
                Author notes
                [* ] Corresponding author: E-mail: marco.passamonti@ 123456unibo.it .
                Associate editor: Gregory Wray
                Article
                msx140
                10.1093/molbev/msx140
                5850712
                28444389
                a3c2fd21-b55e-4f0d-afdc-bfa257bb9cf2
                © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 14
                Categories
                Discoveries

                Molecular biology
                mitochondria,rna interference,sncrnas,smithrnas,doubly uniparental inheritance
                Molecular biology
                mitochondria, rna interference, sncrnas, smithrnas, doubly uniparental inheritance

                Comments

                Comment on this article