19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium.

      The American journal of physiology
      Animals, Apamin, administration & dosage, pharmacology, Biological Factors, antagonists & inhibitors, Charybdotoxin, Endothelium, Vascular, physiology, Male, Mesenteric Arteries, drug effects, metabolism, Myography, instrumentation, methods, Pressure, Rats, Rats, Wistar

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In rat mesenteric artery, endothelium-derived hyperpolarizing factor (EDHF) is blocked by a combination of apamin and charybdotoxin (ChTX). The site of action of these toxins has not been established. We compared the effects of ChTX and apamin applied selectively to the endothelium and to the smooth muscle. In isometrically mounted arteries, ACh (0.01-10 micrometers), in the presence of indomethacin (2.8 microM) and Nomega-nitro-L-arginine methyl ester (L-NAME) (100 microM), concentration dependently relaxed phenylephrine (PE)-stimulated tone (EC50 50 nM; n = 10). Apamin (50 nM) and ChTX (50 nM) abolished this relaxation (n = 5). In pressurized arteries, ACh (10 microM), applied intraluminally in the presence of indomethacin (2.8 microM) and L-NAME (100 microM), dilated both PE-stimulated (0.3-0.5 microM; n = 5) and myogenic tone (n = 3). Apamin (50 nM ) and ChTX (50 nM) applied intraluminally abolished ACh-induced dilatations. Bath superperfusion of apamin and ChTX did not affect ACh-induced dilatations of either PE-stimulated (n = 5) or myogenic tone (n = 3). This is the first demonstration that ChTX and apamin act selectively on the endothelium to block EDHF-mediated relaxation.

          Related collections

          Author and article information

          Comments

          Comment on this article