17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decreased osteogenic activity and mineralization of alveolar bone cells from a patient with amelogenesis imperfecta and FAM83H 1261G>T mutation

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FAM83H mutations lead to autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI). However, the biological role of FAM83H remains unclear. The present study aimed to characterize the alveolar bone cells isolated from a patient with ADHCAI having the mutation, c.1261G > T, p.E421*, in FAM83H. We showed that FAM83H mutant cells had proliferation ability and morphology similar to the controls. The F-actin staining revealed that FAM83H mutant cells were remained in the earlier stages of cell spreading compared to the controls at 30 min, but their spreading was advanced comparable to the controls at later stages. After osteogenic induction, a significant decrease in mRNA levels of RUNX2 and ALP was observed in FAM83H mutant cells at day 7 compared with day 3 while their expressions were increased in the controls. The OPN levels in FAM83H mutant cells were not significantly changed at day 7 compared to day 3 while the controls showed a significant increase. After 14 days, the mineral deposition of FAM83H mutant cells was slightly lower than that of the controls. In conclusion, we identify that FAM83H bone cells have lower expression of osteogenic marker genes and mineralization while they maintain their morphology, proliferation, and spreading. Consistent with previous studies in the ameloblasts and periodontal ligamental cells, these evidences propose that FAM83H influences osteogenic differentiation across different cell types in oral cavity.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity.

          Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FAM83 family oncogenes are broadly involved in human cancers: an integrative multi‐omics approach

            The development of novel targeted therapies for cancer treatment requires identification of reliable targets. FAM83 (‘family with sequence similarity 83’) family members A, B, and D were shown recently to have oncogenic potential. However, the overall oncogenic abilities of FAM83 family genes remain largely unknown. Here, we used a systematic and integrative genomics approach to investigate oncogenic properties of the entire FAM83 family members. We assessed transcriptional expression patterns of eight FAM83 family genes (FAM83A‐H) across tumor types, the relationship between their expression and changes in DNA copy number, and the association with patient survival. By comparing the gene expression levels of FAM83 family members in cancers from 17 different tumor types with those in their corresponding normal tissues, we identified consistent upregulation of FAM83D and FAM83H across the majority of tumor types, which is largely driven by increased DNA copy number. Importantly, we found also that a higher expression level of a signature of FAM83 family members was associated with poor prognosis in a number of human cancers. In breast cancer, we found that alterations in FAM83 family genes correlated significantly with TP53 mutation, whereas significant, but inverse correlation was observed with PIK3CA and CDH1 (E‐cadherin) mutations. We also identified that expression levels of 55 proteins were significantly associated with alterations in FAM83 family genes including a decrease in GATA3, ESR1, and PGR proteins in tumors with alterations in FAM83. Our results provide strong evidence for a critical role of FAM83 family genes in tumor development, with possible relevance for therapeutic target development.
              • Record: found
              • Abstract: found
              • Article: not found

              FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta.

              Amelogenesis imperfecta (AI) is a collection of diverse inherited disorders featuring dental-enamel defects in the absence of significant nondental symptoms. AI phenotypes vary and are categorized as hypoplastic, hypocalcified, and hypomaturation types. Phenotypic specificity to enamel has focused research on genes encoding enamel-matrix proteins. We studied two families with autosomal-dominant hypocalcified AI and have identified nonsense mutations (R325X and Q398X) in the FAM83H gene on chromosome 8q24.3. The mutations perfectly cosegregate with the disease phenotype and demonstrate that FAM83H is required for proper dental-enamel calcification.

                Author and article information

                Contributors
                Journal
                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                2352-4820
                2352-3042
                29 July 2019
                December 2019
                29 July 2019
                : 6
                : 4
                : 391-397
                Affiliations
                [a ]Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
                [b ]Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
                [c ]Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
                [d ]Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
                Author notes
                []Corresponding author. Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand. Fax: +662 218 8691. thantrira.p@ 123456chula.ac.th
                Article
                S2352-3042(19)30049-2
                10.1016/j.gendis.2019.07.005
                6889029
                a3e3860b-aecf-4138-af42-08e9249277d7
                © 2019 Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 5 May 2019
                : 10 July 2019
                : 18 July 2019
                Categories
                Article

                autosomal dominant inheritance,enamel hypoplasia,hypocalcified enamel,mineralization,osteogenic differentiation,periodontium

                Comments

                Comment on this article

                Related Documents Log