23
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome profiling of dorsal root ganglia in a rat model of complex regional pain syndrome type-I reveals potential mechanisms involved in pain

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: Complex regional pain syndrome type-I (CRPS-I) is a progressive and devastating pain condition, which remains clinically challenging. The mechanisms of CRPS-I still remain largely unknown. We aim to identify transcriptome profiles of genes relevant to pain mechanisms and major pathways involved in CRPS-I.

          Methods: A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. RNA-sequencing (RNA-Seq) was used to profile transcriptome of L4-6 dorsal root ganglia (DRGs) of a rat model of CRPS-I.

          Results: CPIP model rats developed persistent mechanical/thermal hyperalgesia in ipsilateral hind paw. RNA-Seq identified a total of 295 differentially expressed genes (DEGs), including 195 up- and 100 downregulated, in ipsilateral DRGs of CPIP rats compared with sham rats. The expression of several representative genes was confirmed by qPCR. Functional analysis of DEGs revealed that the most significant enriched biological processes of upregulated genes include response to lipopolysaccharide, inflammatory response and cytokine activity, which are all important mechanisms mediating pain. We further screened DEGs implicated in pain progress, genes enriched in small- to medium-sized sensory neurons and enriched in TRPV1-lineage nociceptors. By comparing our dataset with other published datasets of neuropathic or inflammatory pain models, we identified a core set of genes and pathways that extensively participate in CPIP and other neuropathic pain states.

          Conclusion: Our study identified transcriptome gene changes in DRGs of an animal model of CRPS-I and could provide insights into identifying promising genes or pathways that can be potentially targeted to ameliorate CRPS-I.

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.

          Transient receptor potential A1 (TRPA1) is expressed in a subset of nociceptive sensory neurons where it acts as a sensor for environmental irritants, including acrolein, and some pungent plant ingredients such as allyl isothiocyanate and cinnamaldehyde. These exogenous compounds activate TRPA1 by covalent modification of cysteine residues. We have used electrophysiological methods and measurements of intracellular calcium concentration ([Ca(2+)](i)) to show that TRPA1 is activated by several classes of endogenous thiol-reactive molecules. TRPA1 was activated by hydrogen peroxide (H(2)O(2); EC(50), 230 microM), by endogenously occurring alkenyl aldehydes (EC(50): 4-hydroxynonenal 19.9 microM, 4-oxo-nonenal 1.9 microM, 4-hydroxyhexenal 38.9 microM) and by the cyclopentenone prostaglandin, 15-deoxy-delta(12,14)-prostaglandin J(2) (15d-PGJ(2), EC(50): 5.6 microM). The effect of H(2)O(2) was reversed by treatment with dithiothreitol indicating that H(2)O(2) acts by promoting the formation of disulfide bonds whereas the actions of the alkenyl aldehydes and 15d-PGJ(2) were not reversed, suggesting that these agents form Michael adducts. H(2)O(2) and the naturally occurring alkenyl aldehydes and 15d-PGJ(2) acted on a subset of isolated rat and mouse sensory neurons [approximately 25% of rat dorsal root ganglion (DRG) and approximately 50% of nodose ganglion neurons] to evoke a depolarizing inward current and an increase in [Ca(2+)](i) in TRPA1 expressing neurons. The abilities of H(2)O(2), alkenyl aldehydes and 15d-PGJ(2) to raise [Ca(2+)](i) in mouse DRG neurons were greatly reduced in neurons from trpa1(-/-) mice. Furthermore, intraplantar injection of either H(2)O(2) or 15d-PGJ2 evoked a nocifensive/pain response in wild-type mice, but not in trpa1(-/-) mice. These data demonstrate that multiple agents produced during episodes of oxidative stress can activate TRPA1 expressed in sensory neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dorsal Root Ganglion Infiltration by Macrophages Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy.

            Chemotherapy-induced peripheral neuropathy (CIPN) is a disruptive and persistent side effect of cancer treatment with paclitaxel. Recent reports showed that paclitaxel treatment results in the activation of Toll-like receptor 4 (TLR4) signaling and increased expression of monocyte chemoattractant protein 1 (MCP-1) in dorsal root ganglion cells. In this study, we sought to determine whether an important consequence of this signaling and also a key step in the CIPN phenotype was the recruitment and infiltration of macrophages into dorsal root ganglia (DRG). Here, we show that macrophage infiltration does occur in a time course that matches the onset of the behavioral CIPN phenotype in Sprague-Dawley rats. Moreover, depletion of macrophages by systemic administration of liposome-encapsulated clodronate (clophosome) partially reversed behavioral signs of paclitaxel-induced CIPN as well as reduced tumor necrosius factor α expression in DRG. Intrathecal injection of MCP-1 neutralizing antibodies reduced paclitaxel-induced macrophage recruitment into the DRG and also blocked the behavioral signs of CIPN. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-RS (LPS-RS) blocked mechanical hypersensitivity, reduced MCP-1 expression, and blocked the infiltration of macrophages into the DRG in paclitaxel-treated rats. The inhibition of macrophage infiltration into DRG after paclitaxel treatment with clodronate or LPS-RS prevented the loss of intraepidermal nerve fibers (IENFs) observed after paclitaxel treatment alone. These results are the first to indicate a mechanistic link such that activation of TLR4 by paclitaxel leads to increased expression of MCP-1 by DRG neurons resulting in macrophage infiltration to the DRG that express inflammatory cytokines and the combination of these events results in IENF loss and the development of behavioral signs of CIPN.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5.

              Recent studies have implicated chemokines in microglial activation and pathogenesis of neuropathic pain. C-X-C motif chemokine 13 (CXCL13) is a B lymphocyte chemoattractant that activates CXCR5. Using the spinal nerve ligation (SNL) model of neuropathic pain, we found that CXCL13 was persistently upregulated in spinal cord neurons after SNL, resulting in spinal astrocyte activation via CXCR5 in mice. shRNA-mediated inhibition of CXCL13 in the spinal cord persistently attenuated SNL-induced neuropathic pain. Interestingly, CXCL13 expression was suppressed by miR-186-5p, a microRNA that colocalized with CXCL13 and was downregulated after SNL. Spinal overexpression of miR-186-5p decreased CXCL13 expression, alleviating neuropathic pain. Furthermore, SNL induced CXCR5 expression in spinal astrocytes, and neuropathic pain was abrogated in Cxcr5-/- mice. CXCR5 expression induced by SNL was required for the SNL-induced activation of spinal astrocytes and microglia. Intrathecal injection of CXCL13 was sufficient to induce pain hypersensitivity and astrocyte activation via CXCR5 and ERK. Finally, intrathecal injection of CXCL13-activated astrocytes induced mechanical allodynia in naive mice. Collectively, our findings reveal a neuronal/astrocytic interaction in the spinal cord by which neuronally produced CXCL13 activates astrocytes via CXCR5 to facilitate neuropathic pain. Thus, miR-186-5p and CXCL13/CXCR5-mediated astrocyte signaling may be suitable therapeutic targets for neuropathic pain.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                JPR
                jpainres
                Journal of Pain Research
                Dove
                1178-7090
                12 April 2019
                2019
                : 12
                : 1201-1216
                Affiliations
                [1 ]Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province , Hangzhou, People’s Republic of China
                [2 ]College of Life Science, Zhejiang Chinese Medical University , Hangzhou, People’s Republic of China
                [3 ]Academy of Chinese Medicine Sciences, Zhejiang Chinese Medical University , Hangzhou, People’s Republic of China
                [4 ]Department of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University , Hangzhou, People’s Republic of China
                Author notes
                Correspondence: Ping WangDepartment of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University , 548 Binwen Road, Hangzhou310053, People’s Republic of ChinaEmail wangping897@ 123456163.com
                Boyi LiuDepartment of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University , 548 Binwen Road, Hangzhou310053, People’s Republic of ChinaEmail boyi.liu@ 123456foxmail.com
                [*]

                These authors contributed equally to this work

                Article
                188758
                10.2147/JPR.S188758
                6489655
                31114302
                a3ecc95c-f8e4-442c-93bc-2831f8281410
                © 2019 Yin et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 26 September 2018
                : 27 February 2019
                Page count
                Figures: 7, Tables: 4, References: 54, Pages: 16
                Categories
                Original Research

                Anesthesiology & Pain management
                rna-seq,pain,crps-i,dorsal root ganglion,neuropathic pain
                Anesthesiology & Pain management
                rna-seq, pain, crps-i, dorsal root ganglion, neuropathic pain

                Comments

                Comment on this article