21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced CellClassifier: a multi-class classification tool for microscopy images

      product-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories.

          Results

          We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables.

          Conclusion

          Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          CellProfiler Analyst: data exploration and analysis software for complex image-based screens

          Background Image-based screens can produce hundreds of measured features for each of hundreds of millions of individual cells in a single experiment. Results Here, we describe CellProfiler Analyst, open-source software for the interactive exploration and analysis of multidimensional data, particularly data from high-throughput, image-based experiments. Conclusion The system enables interactive data exploration for image-based screens and automated scoring of complex phenotypes that require combinations of multiple measured features per cell.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Erratum: gene selection for cancer classification using support vector machines

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration.

              The small GTPases, Rab5 and Rac, are essential for endocytosis and actin remodeling, respectively. Coordination of these processes is critical to achieve spatial restriction of intracellular signaling, which is essential for a variety of polarized functions. Here, we show that clathrin- and Rab5-mediated endocytosis are required for the activation of Rac induced by motogenic stimuli. Rac activation occurs on early endosomes, where the RacGEF Tiam1 is also recruited. Subsequent recycling of Rac to the plasma membrane ensures localized signaling, leading to the formation of actin-based migratory protrusions. Thus, membrane trafficking of Rac is required for the spatial resolution of Rac-dependent motogenic signals. We further demonstrate that a Rab5-to-Rac circuitry controls the morphology of motile mammalian tumor cells and primordial germinal cells during zebrafish development, suggesting that this circuitry is relevant for the regulation of migratory programs in various cells, in both in vitro settings and whole organisms.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2010
                14 January 2010
                : 11
                : 30
                Affiliations
                [1 ]Institute of Microbiology, ETH Zurich, Wolfgang Pauli-Str. 10, 8093 Zürich, Switzerland
                [2 ]Light Microscopy Centre, Institute of Biochemistry, ETH Zürich, Schafmattstr. 18, 8093 Zürich, Switzerland
                Article
                1471-2105-11-30
                10.1186/1471-2105-11-30
                2821321
                20074370
                a3f07b33-4999-492d-a8ba-daf2b83ec81b
                Copyright ©2010 Misselwitz et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 June 2009
                : 14 January 2010
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article