9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Irbesartan Ameliorates Lipid Deposition by Enhancing Autophagy via PKC/AMPK/ULK1 Axis in Free Fatty Acid Induced Hepatocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Irbesartan has shown significant therapeutic effects in hypertensive patients with non-alcoholic fatty liver disease (NAFLD). To determine the underlying mechanisms of its action, we established an in vitro model of NAFLD by treating human and mouse hepatocytes with free fatty acids (FFAs) and angiotensin (Ang) II. Irbesartan significantly reversed AngII/FFA-induced lipid deposition and mitochondrial dysfunction by restoring ATP production and the mitochondrial membrane potential (MMP), and decreasing the levels of reactive oxygen species (ROS) and inflammatory markers. In addition, irbesartan also increased the autophagy flux, in terms of increased numbers of autolysosomes and autophagosomes, and the upregulation and mitochondrial localization of the autophagic proteins Atg5 and LC3BII/I. Activation of protein kinase C (PKC) and inhibition of the autophagic flux exacerbated mitochondrial dysfunction in the steatotic hepatocytes. Furthermore, AngII upregulated PKC which inhibited AMPK phosphorylation via direct interaction with the AngII receptor AT1-R. Irbesartan inhibited PKC and activated AMPK and its downstream effector ULK1, thereby inducing autophagy, decreasing lipid deposition, and restoring mitochondrial function. Taken together, irbesartan triggers autophagy via the PKC/AMPK/ULK1 axis to ameliorate the pathological changes in the steatotic hepatocytes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy.

          Autophagy is a stress response protecting cells from unfavorable conditions, such as nutrient starvation. The class III phosphatidylinositol-3 kinase, Vps34, forms multiple complexes and regulates both intracellular vesicle trafficking and autophagy induction. Here, we show that AMPK plays a key role in regulating different Vps34 complexes. AMPK inhibits the nonautophagy Vps34 complex by phosphorylating T163/S165 in Vps34 and therefore suppresses overall PI(3)P production and protects cells from starvation. In parallel, AMPK activates the proautophagy Vps34 complex by phosphorylating S91/S94 in Beclin1 to induce autophagy. Atg14L, an autophagy-essential gene present only in the proautophagy Vps34 complex, inhibits Vps34 phosphorylation but increases Beclin1 phosphorylation by AMPK. As such, Atg14L dictates the differential regulation (either inhibition or activation) of different Vps34 complexes in response to glucose starvation. Our study reveals an intricate molecular regulation of Vps34 complexes by AMPK in nutrient stress response and autophagy. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Role of Cholesterol in the Pathogenesis of NASH.

            Lipotoxicity drives the development of progressive hepatic inflammation and fibrosis in a subgroup of patients with nonalcoholic fatty liver disease (NAFLD), causing nonalcoholic steatohepatitis (NASH) and even progression to cirrhosis and hepatocellular carcinoma (HCC). While the underlying molecular mechanisms responsible for the development of inflammation and fibrosis that characterize progressive NASH remain unclear, emerging evidence now suggests that hepatic free cholesterol (FC) is a major lipotoxic molecule critical in the development of experimental and human NASH. In this review, we examine the effects of excess FC in hepatocytes, Kupffer cells (KCs), and hepatic stellate cells (HSCs), and the subcellular mechanisms by which excess FC can induce cellular toxicity or proinflammatory and profibrotic effects in these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ULK1 complex: sensing nutrient signals for autophagy activation.

              The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                29 May 2019
                2019
                : 10
                : 681
                Affiliations
                Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
                Author notes

                Edited by: Anna Maria Giudetti, University of Salento, Italy

                Reviewed by: Daniele Vergara, University of Salento, Italy; Lei Zhou, Guangxi University, China; Rai Ajit K. Srivastava, Gemphire Therapeutics, United States

                *Correspondence: Side Liu, liuside2011@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Lipid and Fatty Acid Research, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.00681
                6548903
                31191364
                a403a350-c3fe-415b-b6e5-7c6f0948406a
                Copyright © 2019 He, Ding, Lai, Wang, Li and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 February 2019
                : 13 May 2019
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 46, Pages: 11, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                irbesartan,lipid deposition,autophagy,angiotensin ii,pkc,ampk,ulk1
                Anatomy & Physiology
                irbesartan, lipid deposition, autophagy, angiotensin ii, pkc, ampk, ulk1

                Comments

                Comment on this article