Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ChemNav – Magnetic sensing by molecules, birds, and devices – FP7

      Impact

      Science Impact, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The sensory mechanisms that allow birds to perceive the direction of the Earth�s magnetic field for the purpose of navigation are only now beginning to be understood. One of the two leading hypotheses is founded on magnetically sensitive photochemical reactions in the retina. It is thought that transient photo-induced radical pairs in cryptochrome, a blue-light photoreceptor protein, act as the primary magnetic sensor. Experimental and theoretical support for this mechanism has been accumulating over the last few years, qualifying chemical magnetoreception for a place in the emerging field of Quantum Biology.In this proposal, we aim to determine the detailed principles of efficient chemical sensing of weak magnetic fields, to elucidate the biophysics of animal compass magnetoreception, and to explore the possibilities of magnetic sensing technologies inspired by the coherent dynamics of entangled electron spins in cryptochrome-based radical pairs.We will:(a) Establish the fundamental structural, kinetic, dynamic and magnetic properties that allow efficient chemical sensing of Earth-strength magnetic fields in cryptochromes.(b) Devise new, sensitive forms of optical spectroscopy for this purpose.(c) Design, construct and iteratively refine non-natural proteins (maquettes) as versatile model systems for testing and optimising molecular magnetoreceptors.(d) Characterise the spin dynamics and magnetic sensitivity of maquette magnetoreceptors using specialised magnetic resonance and optical spectroscopic techniques.(e) Develop efficient and accurate methods for simulating the coherent spin dynamics of realistic radical pairs in order to interpret experimental data, guide the implementation of new experiments, test concepts of magnetoreceptor function, and guide the design of efficient sensors.(f) Explore the feasibility of electronically addressable, organic semiconductor sensors inspired by radical pair magnetoreception

          Related collections

          Author and article information

          Journal
          Impact
          impact
          Science Impact, Ltd.
          2398-7073
          June 14 2017
          June 14 2017
          : 2017
          : 5
          : 55-57
          Article
          10.21820/23987073.2017.5.55
          © 2017

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Earth & Environmental sciences, Medicine, Computer science, Agriculture, Engineering

          Comments

          Comment on this article