4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The equilibrium vacancy concentration in nickel was determined from ab initio calculations performed with both generalized gradient approximation and local density approximation up to the melting point. We focus the study on the vacancy formation entropy expressed as a sum of a vibration and an electronic contribution, which were determined from the vibration modes and the electronic densities of states. Applying a method based on the quasi-harmonic approximation, the temperature dependence of the defect formation energy and entropy were calculated. We show that the vibrations of the first shell of atoms around the defect are predominant to the vibration formation entropy. On the other hand, the electronic formation entropy is very sensitive to the exchange-correlation potential used for the calculations. Finally, the vacancy concentration is computed at finite temperature with the calculated values for the defect formation energy and entropy. In order to reconcile point-defects concentration obtained with our calculations and experimental data, we conducted complementary calorimetric measurements of the vacancy concentration in the 1073-1273 K temperature range. Close agreement between theory and experiments at high temperature is achieved if the calculations are performed with the generalized gradient approximation and both vibration and electronic contributions to the formation entropy are taken into account.

          Related collections

          Author and article information

          Journal
          J Chem Phys
          The Journal of chemical physics
          AIP Publishing
          1089-7690
          0021-9606
          Mar 14 2014
          : 140
          : 10
          Affiliations
          [1 ] Laboratoire des Sciences de l'Ingénieur pour l'Environnement, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17000 La Rochelle, France.
          Article
          10.1063/1.4867543
          24628194

          Comments

          Comment on this article