3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low-arginine and low-protein diets induce hepatic lipid accumulation through different mechanisms in growing rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dietary protein deficiency and amino acid imbalance cause hepatic fat accumulation. We previously demonstrated that only arginine deficiency or total amino acid deficiency in a diet caused significant hepatic triglyceride (TG) accumulation in young Wistar rats. In this study, we explored the mechanisms of fatty liver formation in these models.

          Methods

          We fed 6-week-old male Wistar rats a control diet (containing an amino acid mixture equivalent to 15% protein), a low-total-amino acid diet (equivalent to 5% protein; 5PAA), and a low-arginine diet (only the arginine content is as low as that of the 5PAA diet) for 2 weeks.

          Results

          Much greater hepatic TG accumulation was observed in the low-arginine group than in the low-total-amino acid group. The lipid consumption rate and fatty acid uptake in the liver did not significantly differ between the groups. In contrast, the low-total-amino acid diet potentiated insulin sensitivity and related signaling in the liver and enhanced de novo lipogenesis. The low-arginine diet also inhibited hepatic very-low-density lipoprotein secretion without affecting hepatic insulin signaling and lipogenesis.

          Conclusions

          Although the arginine content of the low-arginine diet was as low as that of the low-total-amino acid diet, the two diets caused fatty liver via completely different mechanisms. Enhanced lipogenesis was the primary cause of a low-protein diet-induced fatty liver, whereas lower very-low-density lipoprotein secretion caused low-arginine diet-induced fatty liver.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Nutritional regulation of the insulin-like growth factors.

          Nutrition is one of the main regulators of circulating IGF-I. In humans, serum IGF-I concentrations are markedly lowered by energy and/or protein deprivation. Both energy and proteins are critical in the regulation of serum IGF-I concentrations. Indeed, after fasting, optimal intake of both energy and protein is necessary for the rapid restoration of circulating IGF-I. We believe, however, that in adult humans energy may be somewhat more important than protein in this regard. While the lowest protein intake is able to increase IGF-I in the presence of adequate energy, there is a threshold energy requirement below which optimal protein intake fails to raise IGF-I after fasting. When energy intake is severely reduced, the carbohydrate content of the diet is a major determinant of responsiveness of IGF-I to GH. The essential amino acid content of the diet is also critical for the optimal restoration of IGF-I after fasting, when protein intake is reduced. The exquisite sensitivity of circulating IGF-I to nutrients, the nycthemeral stability of its concentrations and its relative short half-life constitute the basis for its use as a marker of both nutritional status and adequacy of nutritional rehabilitation. For these indications, IGF-I measurement is more sensitive and more specific than measurement of the other nutrient-related serum proteins (albumin, prealbumin, transferrin, retinol-binding protein). Animal models have been developed to investigate the mechanisms responsible for the nutritional regulation of IGF-I. There is no doubt that many mechanisms are involved (Fig. 12). Decline of serum IGF-I in dietary restriction is independent of the diet-induced alterations in pituitary GH secretion. The role of the liver GH receptors is dependent on the severity of the nutritional insult. In severe dietary restriction (fasting), a marked decrease of the number of somatogenic receptors supports the role of a receptor defect in the decline of circulating IGF-I. In contrast, in less severe forms of dietary restriction (protein restriction), the decline of IGF-I results from a postreceptor defect in the GH action at the hepatic level. Nutritional deprivation decreases hepatic IGF-I production by diminishing IGF-I gene expression. Decline in IGF-I gene expression is mainly caused by nutrient deficiency and less importantly by the nutritionally induced hormonal changes (insulin and T3). Diet restriction also increases the clearance and degradation of serum IGF-I through changes in the levels of circulating IGFBPs.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of breed, diet and muscle on fat deposition and eating quality in pigs.

            A study in 192 entire male pigs examined the effects of breed, diet and muscle on growth, fatness, sensory traits and fatty acid composition. There were four breeds: two modern breeds, Duroc and Large White and two traditional breeds, Berkshire and Tamworth. The diets differed in energy:protein ratio, being conventional (C) and low protein (LP) diets, respectively. Muscles investigated were the `white' longissimus dorsi (LD) and the `red' psoas major (PS). Breed influenced growth rate and fatness, the modern breeds being faster-growing with leaner carcasses. However, the concentrations of neutral lipid fatty acids and marbling fat (neutral lipid+phosopholipid fatty acids) were higher in Berkshire and Duroc, in both LD and PS. Relationships between marbling fat and P2 fat thickness showed clear breed effects, with Duroc having high marbling fat at low P2 and Tamworth low marbling fat at high P2. Breed effects on sensory scores given by the trained taste panel to griddled LD and PS steaks were relatively small. Breed affected the fatty acid composition of intramuscular neutral lipid, with high % values for the saturated fatty acids, 14:0 and 16:0 in Berkshire and Tamworth (fat carcasses) and high values for polyunsaturated fatty acids in Duroc and Large White (lean carcasses). Duroc had particularly high concentrations of the long-chain polyunsaturated fatty acids, 20:5n-3 and 22:6n-3 in phospholipid of both muscles. Diet influenced growth rate and fatness, the LP diet slowing growth and producing fatter meat, more so in the two modern breeds, and particularly in intramuscular rather than subcutaneous fat. This diet produced more tender and juicy meat, although pork flavour and flavour liking were reduced. The PS muscle had higher tenderness, juiciness, pork flavour, flavour liking and overall liking scores than LD. The concentration of phospholipid fatty acids was higher in PS than LD but neutral lipid fatty acid content and marbling fat were higher in LD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracellular trafficking and secretion of VLDL.

              Steady increase in the incidence of atherosclerosis is becoming a major concern not only in the United States but also in other countries. One of the major risk factors for the development of atherosclerosis is high concentrations of plasma low-density lipoprotein, which are metabolic products of very low-density lipoprotein (VLDL). VLDLs are synthesized and secreted by the liver. In this review, we discuss various stages through which VLDL particles go from their biogenesis to secretion in the circulatory system. Once VLDLs are synthesized in the lumen of the endoplasmic reticulum, they are transported to the Golgi. The transport of nascent VLDLs from the endoplasmic reticulum to Golgi is a complex multistep process, which is mediated by a specialized transport vesicle, the VLDL transport vesicle. The VLDL transport vesicle delivers VLDLs to the cis-Golgi lumen where nascent VLDLs undergo a number of essential modifications. The mature VLDL particles are then transported to the plasma membrane and secreted in the circulatory system. Understanding of molecular mechanisms and identification of factors regulating the complex intracellular VLDL trafficking will provide insight into the pathophysiology of various metabolic disorders associated with abnormal VLDL secretion and identify potential new therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                akatoq@mail.ecc.u-tokyo.ac.jp
                Journal
                Nutr Metab (Lond)
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central (London )
                1743-7075
                3 August 2020
                3 August 2020
                2020
                : 17
                : 60
                Affiliations
                [1 ]GRID grid.26999.3d, ISNI 0000 0001 2151 536X, Department of Agricultural Biological Chemistry, , The University of Tokyo, ; Bunkyo-ku, Tokyo, 113-8657 Japan
                [2 ]GRID grid.26999.3d, ISNI 0000 0001 2151 536X, Department of Animal Sciences, , The University of Tokyo, ; Tokyo, Japan
                [3 ]GRID grid.26999.3d, ISNI 0000 0001 2151 536X, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, , The University of Tokyo, ; Tokyo, Japan
                [4 ]GRID grid.410821.e, ISNI 0000 0001 2173 8328, Department of Bioregulation, Institute for Advanced Medical Sciences, , Nippon Medical School, ; Tokyo, Japan
                Author information
                http://orcid.org/0000-0001-9140-7698
                Article
                477
                10.1186/s12986-020-00477-5
                7398226
                32774438
                a41aaa12-2af7-43c6-939f-d6b619287bd7
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 January 2020
                : 22 July 2020
                Funding
                Funded by: Bio-oriented Technology Research Advancement Institution, NARO, Grant- in-Aid for Scientific Research (A)
                Award ID: #25221204
                Funded by: Bio-oriented Technology Research Advancement Institution, NARO, Grant- in-Aid for Scientific Research (S)
                Award ID: #18H03972
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Nutrition & Dietetics
                arginine deficiency,low-protein diet,hepatosteatosis,apolipoprotein a-iv,insulin signaling

                Comments

                Comment on this article