42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Grape-Seed Proanthocyanidin Extract as Suppressors of Bone Destruction in Inflammatory Autoimmune Arthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic autoimmune inflammation, which is commonly observed in rheumatoid arthritis (RA), disrupts the delicate balance between bone resorption and formation causing thedestruction of the bone and joints. We undertook this study to verify the effects of natural grape-seed proanthocyanidin extract (GSPE), an antioxidant, on chronic inflammation and bone destruction. GSPE administration ameliorated the arthritic symptoms of collagen-induced arthritis (CIA), which are representative of cartilage and bone destruction. GSPE treatment reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and osteoclast activity and increased differentiation of mature osteoblasts. Receptor activator of NFκB ligand expression in fibroblasts from RA patients was abrogated with GSPE treatment. GSPE blocked human peripheral blood mononuclear cell-derived osteoclastogenesis and acted as an antioxidant. GSPE improved the arthritic manifestations of CIA mice by simultaneously suppressing osteoclast differentiation and promoting osteoblast differentiation. Our results suggest that GSPE may be beneficial for the treatment of inflammation-associated bone destruction.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.

          The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA). The new criteria are as follows: 1) morning stiffness in and around joints lasting at least 1 hour before maximal improvement; 2) soft tissue swelling (arthritis) of 3 or more joint areas observed by a physician; 3) swelling (arthritis) of the proximal interphalangeal, metacarpophalangeal, or wrist joints; 4) symmetric swelling (arthritis); 5) rheumatoid nodules; 6) the presence of rheumatoid factor; and 7) radiographic erosions and/or periarticular osteopenia in hand and/or wrist joints. Criteria 1 through 4 must have been present for at least 6 weeks. Rheumatoid arthritis is defined by the presence of 4 or more criteria, and no further qualifications (classic, definite, or probable) or list of exclusions are required. In addition, a "classification tree" schema is presented which performs equally as well as the traditional (4 of 7) format. The new criteria demonstrated 91-94% sensitivity and 89% specificity for RA when compared with non-RA rheumatic disease control subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.

            Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells and dendritic cells in the immune system. The OPGL receptor, RANK, is expressed on chondrocytes, osteoclast precursors and mature osteoclasts. OPGL expression in T cells is induced by antigen receptor engagement, which suggests that activated T cells may influence bone metabolism through OPGL and RANK. Here we report that activated T cells can directly trigger osteoclastogenesis through OPGL. Systemic activation of T cells in vivo leads to an OPGL-mediated increase in osteoclastogenesis and bone loss. In a T-cell-dependent model of rat adjuvant arthritis characterized by severe joint inflammation, bone and cartilage destruction and crippling, blocking of OPGL through osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but not inflammation. These results show that both systemic and local T-cell activation can lead to OPGL production and subsequent bone loss, and they provide a novel paradigm for T cells as regulators of bone physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.

              Osteoblasts/stromal cells are essentially involved in osteoclast differentiation and function through cell-to-cell contact (Fig. 8). Although many attempts have been made to elucidate the mechanism of the so-called "microenvironment provided by osteoblasts/stromal cells," (5-8) it has remained an open question until OPG and its binding molecule were cloned. The serial discovery of the new members of the TNF receptor-ligand family members has confirmed the idea that osteoclast differentiation and function are regulated by osteoblasts/stromal cells. RANKL, which has also been called ODF, TRANCE, or OPGL, is a member of the TNF ligand family. Expression of RANKL mRNA in osteoblasts/stromal cells is up-regulated by osteotropic factors such as 1 alpha, 25(OH)2D3, PTH, and IL-11. Osteoclast precursors express RANK, a TNF receptor family member, recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into pOCs in the presence of M-CSF. RANKL is also involved in the survival and fusion of pOCs and activation of mature osteoclasts. OPG, which has also been called OCIF or TR1, is a soluble receptor for RANKL and acts as a decoy receptor in the RANK-RANKL signaling system (Fig. 8). In conclusion, osteoblasts/stromal cells are involved in all of the processes of osteoclast development, such as differentiation, survival, fusion, and activation of osteoclasts (Fig. 8). Osteoblasts/stromal cells can now be replaced with RANKL and M-CSF in dealing with the whole life of osteoclasts. RANKL, RANK, and OPG are three key molecules that regulate osteoclast recruitment and function. Further studies on these key molecules will elucidate the molecular mechanism of the regulation of osteoclastic bone resorption. This line of studies will establish new ways to treat several metabolic bone diseases caused by abnormal osteoclast recruitment and functions such as osteopetrosis, osteoporosis, metastatic bone disease, Paget's disease, rheumatoid arthritis, and periodontal bone disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 December 2012
                : 7
                : 12
                : e51377
                Affiliations
                [1 ]The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea
                [2 ]Division of Rheumatology, Department of Internal Medicine, Hallym University Kang-Nam Sacred Heart Hospital, Seoul, Republic of Korea
                [3 ]Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
                [4 ]Immune Tolerance Research Center, Convergent Research Consortium for Immunologic Disease (CRCID); The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
                Faculté de médecine de Nantes, France
                Author notes

                ¶ These authors also contributed equally to this work.

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MLC JKM JSP MKP. Performed the experiments: JSP MKP HJO YJW MAL JHL JHJ YOJ. Analyzed the data: MLC JKM JSP MKP JHL ZHL. Contributed reagents/materials/analysis tools: SHP HYK. Wrote the paper: MLC JKM JSP.

                Article
                PONE-D-12-18653
                10.1371/journal.pone.0051377
                3519627
                23251512
                a4356df5-9e7f-46e4-919f-2ea946b65129
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 June 2012
                : 2 November 2012
                Page count
                Pages: 10
                Funding
                This work was supported by a grant (A092258) from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare, and Family Affairs, Republic of Korea. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Bone
                Biochemistry
                Metabolism
                Bone and Mineral Metabolism
                Immunology
                Immunity
                Immunotherapy
                Inflammation
                Autoimmunity
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Clinical Immunology
                Autoimmune Diseases
                Rheumatoid Arthritis
                Immunity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article