13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel type of cellular-uptake-shielding multifunctional envelope-type mesoporous silica nanoparticle (MEMSN) was designed for tumor-triggered targeting drug delivery to cancerous cells. β-Cyclodextrin (β-CD) was anchored on the surface of mesoporous silica nanoparticles via disulfide linking for glutathione-induced intracellular drug release. Then a peptide sequence containing Arg-Gly-Asp (RGD) motif and matrix metalloproteinase (MMP) substrate peptide Pro-Leu-Gly-Val-Arg (PLGVR) was introduced onto the surface of the nanoparticles via host-guest interaction. To protect the targeting ligand and prevent the nanoparticles from being uptaken by normal cells, the nanoparticles were further decorated with poly(aspartic acid) (PASP) to obtain MEMSN. In vitro study demonstrated that MEMSN was shielded against normal cells. After reaching the tumor cells, the targeting property could be switched on by removing the PASP protection layer via hydrolyzation of PLGVR at the MMP-rich tumor cells, which enabled the easy uptake of drug-loaded nanoparticles by tumor cells and subsequent glutathione-induced drug release intracellularly.

          Related collections

          Author and article information

          Journal
          J. Am. Chem. Soc.
          Journal of the American Chemical Society
          1520-5126
          0002-7863
          Apr 3 2013
          : 135
          : 13
          Affiliations
          [1 ] Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, P. R. China.
          Article
          10.1021/ja312004m
          23464924

          Comments

          Comment on this article