3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cancer patients and coronavirus disease 2019: evidence in context

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the rapidly evolving coronavirus disease 2019 (COVID-19) outbreak, inherent literature has been increasing at an impressive rate. Such a dynamic scenario imposes the necessity to define a new framework for cancer care. The first emerging evidence has transmitted contrasting messages with regards to cancer care management. Some authors have hypothesized an increased infection risk for cancer patients, with a more severe disease, requiring a reorganization of health care system that could disrupt an established high quality cancer care routine in many developed countries. Other authors have attempted to interpret data related to cancer patients by better defining their “active status”. We herein present our point of view in the light of current evidence and based on the experience matured at our cancer institute in managing cancer patients during the COVID-19 pandemic. Our core idea is that “active cancer” may be considered a proxy of more recent exposure to diagnostic or therapeutic procedures, and the frequency of access to health care facilities can be predicted as a function of the severity of cancer symptoms. Hence, COVID-19 screening program and the adjustment of cancer care provision in a cancer institutions should be led by this risk model, while awaiting new evidence.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China

          China and the rest of the world are experiencing an outbreak of a novel betacoronavirus known as severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). 1 By Feb 12, 2020, the rapid spread of the virus had caused 42 747 cases and 1017 deaths in China and cases have been reported in 25 countries, including the USA, Japan, and Spain. WHO has declared 2019 novel coronavirus disease (COVID-19), caused by SARS-CoV-2, a public health emergency of international concern. In contrast to severe acute respiratory system coronavirus and Middle East respiratory syndrome coronavirus, more deaths from COVID-19 have been caused by multiple organ dysfunction syndrome rather than respiratory failure, 2 which might be attributable to the widespread distribution of angiotensin converting enzyme 2—the functional receptor for SARS-CoV-2—in multiple organs.3, 4 Patients with cancer are more susceptible to infection than individuals without cancer because of their systemic immunosuppressive state caused by the malignancy and anticancer treatments, such as chemotherapy or surgery.5, 6, 7, 8 Therefore, these patients might be at increased risk of COVID-19 and have a poorer prognosis. On behalf of the National Clinical Research Center for Respiratory Disease, we worked together with the National Health Commission of the People's Republic of China to establish a prospective cohort to monitor COVID-19 cases throughout China. As of the data cutoff on Jan 31, 2020, we have collected and analysed 2007 cases from 575 hospitals (appendix pp 4–9 for a full list) in 31 provincial administrative regions. All cases were diagnosed with laboratory-confirmed COVID-19 acute respiratory disease and were admitted to hospital. We excluded 417 cases because of insufficient records of previous disease history. 18 (1%; 95% CI 0·61–1·65) of 1590 COVID-19 cases had a history of cancer, which seems to be higher than the incidence of cancer in the overall Chinese population (285·83 [0·29%] per 100 000 people, according to 2015 cancer epidemiology statistics 9 ). Detailed information about the 18 patients with cancer with COVID-19 is summarised in the appendix (p 1). Lung cancer was the most frequent type (five [28%] of 18 patients). Four (25%) of 16 patients (two of the 18 patients had unknown treatment status) with cancer with COVID-19 had received chemotherapy or surgery within the past month, and the other 12 (25%) patients were cancer survivors in routine follow-up after primary resection. Compared with patients without cancer, patients with cancer were older (mean age 63·1 years [SD 12·1] vs 48·7 years [16·2]), more likely to have a history of smoking (four [22%] of 18 patients vs 107 [7%] of 1572 patients), had more polypnea (eight [47%] of 17 patients vs 323 [23%] of 1377 patients; some data were missing on polypnea), and more severe baseline CT manifestation (17 [94%] of 18 patients vs 1113 [71%] of 1572 patients), but had no significant differences in sex, other baseline symptoms, other comorbidities, or baseline severity of x-ray (appendix p 2). Most importantly, patients with cancer were observed to have a higher risk of severe events (a composite endpoint defined as the percentage of patients being admitted to the intensive care unit requiring invasive ventilation, or death) compared with patients without cancer (seven [39%] of 18 patients vs 124 [8%] of 1572 patients; Fisher's exact p=0·0003). We observed similar results when the severe events were defined both by the above objective events and physician evaluation (nine [50%] of 18 patients vs 245 [16%] of 1572 patients; Fisher's exact p=0·0008). Moreover, patients who underwent chemotherapy or surgery in the past month had a numerically higher risk (three [75%] of four patients) of clinically severe events than did those not receiving chemotherapy or surgery (six [43%] of 14 patients; figure ). These odds were further confirmed by logistic regression (odds ratio [OR] 5·34, 95% CI 1·80–16·18; p=0·0026) after adjusting for other risk factors, including age, smoking history, and other comorbidities. Cancer history represented the highest risk for severe events (appendix p 3). Among patients with cancer, older age was the only risk factor for severe events (OR 1·43, 95% CI 0·97–2·12; p=0·072). Patients with lung cancer did not have a higher probability of severe events compared with patients with other cancer types (one [20%] of five patients with lung cancer vs eight [62%] of 13 patients with other types of cancer; p=0·294). Additionally, we used a Cox regression model to evaluate the time-dependent hazards of developing severe events, and found that patients with cancer deteriorated more rapidly than those without cancer (median time to severe events 13 days [IQR 6–15] vs 43 days [20–not reached]; p<0·0001; hazard ratio 3·56, 95% CI 1·65–7·69, after adjusting for age; figure). Figure Severe events in patients without cancer, cancer survivors, and patients with cancer (A) and risks of developing severe events for patients with cancer and patients without cancer (B) ICU=intensive care unit. In this study, we analysed the risk for severe COVID-19 in patients with cancer for the first time, to our knowledge; only by nationwide analysis can we follow up patients with rare but important comorbidities, such as cancer. We found that patients with cancer might have a higher risk of COVID-19 than individuals without cancer. Additionally, we showed that patients with cancer had poorer outcomes from COVID-19, providing a timely reminder to physicians that more intensive attention should be paid to patients with cancer, in case of rapid deterioration. Therefore, we propose three major strategies for patients with cancer in this COVID-19 crisis, and in future attacks of severe infectious diseases. First, an intentional postponing of adjuvant chemotherapy or elective surgery for stable cancer should be considered in endemic areas. Second, stronger personal protection provisions should be made for patients with cancer or cancer survivors. Third, more intensive surveillance or treatment should be considered when patients with cancer are infected with SARS-CoV-2, especially in older patients or those with other comorbidities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              COVID-19 and smoking: A systematic review of the evidence

              COVID-19 is a coronavirus outbreak that initially appeared in Wuhan, Hubei Province, China, in December 2019, but it has already evolved into a pandemic spreading rapidly worldwide 1,2 . As of 18 March 2020, a total number of 194909 cases of COVID-19 have been reported, including 7876 deaths, the majority of which have been reported in China (3242) and Italy (2505) 3 . However, as the pandemic is still unfortunately under progression, there are limited data with regard to the clinical characteristics of the patients as well as to their prognostic factors 4 . Smoking, to date, has been assumed to be possibly associated with adverse disease prognosis, as extensive evidence has highlighted the negative impact of tobacco use on lung health and its causal association with a plethora of respiratory diseases 5 . Smoking is also detrimental to the immune system and its responsiveness to infections, making smokers more vulnerable to infectious diseases 6 . Previous studies have shown that smokers are twice more likely than non-smokers to contract influenza and have more severe symptoms, while smokers were also noted to have higher mortality in the previous MERS-CoV outbreak 7,8 . Given the gap in the evidence, we conducted a systematic review of studies on COVID-19 that included information on patients’ smoking status to evaluate the association between smoking and COVID-19 outcomes including the severity of the disease, the need for mechanical ventilation, the need for intensive care unit (ICU) hospitalization and death. The literature search was conducted on 17 March 2020, using two databases (PubMed, ScienceDirect), with the search terms: [‘smoking’ OR ‘tobacco’ OR ‘risk factors’ OR ‘smoker*’] AND [‘COVID-19’ OR ‘COVID 19’ OR ‘novel coronavirus’ OR ‘sars cov-2’ OR ‘sars cov 2’] and included studies published in 2019 and 2020. Further inclusion criteria were that the studies were in English and referred to humans. We also searched the reference lists of the studies included. A total of 71 studies were retrieved through the search, of which 66 were excluded after full-text screening, leaving five studies that were included. All of the studies were conducted in China, four in Wuhan and one across provinces in mainland China. The populations in all studies were patients with COVID-19, and the sample size ranged from 41 to 1099 patients. With regard to the study design, retrospective and prospective methods were used, and the timeframe of all five studies covered the first two months of the COVID-19 pandemic (December 2019, January 2020). Specifically, Zhou et al. 9 studied the epidemiological characteristics of 191 individuals infected with COVID-19, without, however, reporting in more detail the mortality risk factors and the clinical outcomes of the disease. Among the 191 patients, there were 54 deaths, while 137 survived. Among those that died, 9% were current smokers compared to 4% among those that survived, with no statistically significant difference between the smoking rates of survivors and non-survivors (p=0.21) with regard to mortality from COVID-19. Similarly, Zhang et al. 10 presented clinical characteristics of 140 patients with COVID-19. The results showed that among severe patients (n=58), 3.4% were current smokers and 6.9% were former smokers, in contrast to non-severe patients (n=82) among which 0% were current smokers and 3.7% were former smokers , leading to an OR of 2.23; (95% CI: 0.65–7.63; p=0.2). Huang et al. 11 studied the epidemiological characteristics of COVID-19 among 41 patients. In this study, none of those who needed to be admitted to an ICU (n=13) was a current smoker. In contrast, three patients from the non-ICU group were current smokers, with no statistically significant difference between the two groups of patients (p=0.31), albeit the small sample size of the study. The largest study population of 1099 patients with COVID-19 was provided by Guan et al. 12 from multiple regions of mainland China. Descriptive results on the smoking status of patients were provided for the 1099 patients, of which 173 had severe symptoms, and 926 had non-severe symptoms. Among the patients with severe symptoms, 16.9% were current smokers and 5.2% were former smokers, in contrast to patients with non-severe symptoms where 11.8% were current smokers and 1.3% were former smokers. Additionally, in the group of patients that either needed mechanical ventilation, admission to an ICU or died, 25.5% were current smokers and 7.6% were former smokers. In contrast, in the group of patients that did not have these adverse outcomes, only 11.8% were current smokers and 1.6% were former smokers. No statistical analysis for evaluating the association between the severity of the disease outcome and smoking status was conducted in that study. Finally, Liu et al. 13 found among their population of 78 patients with COVID-19 that the adverse outcome group had a significantly higher proportion of patients with a history of smoking (27.3%) than the group that showed improvement or stabilization (3.0%), with this difference statistically significant at the p=0.018 level. In their multivariate logistic regression analysis, the history of smoking was a risk factor of disease progression (OR=14.28; 95% CI: 1.58–25.00; p= 0.018). We identified five studies that reported data on the smoking status of patients infected with COVID-19. Notably, in the largest study that assessed severity, there were higher percentages of current and former smokers among patients that needed ICU support, mechanical ventilation or who had died, and a higher percentage of smokers among the severe cases 12 . However, from their published data we can calculate that the smokers were 1.4 times more likely (RR=1.4, 95% CI: 0.98–2.00) to have severe symptoms of COVID-19 and approximately 2.4 times more likely to be admitted to an ICU, need mechanical ventilation or die compared to non-smokers (RR=2.4, 95% CI: 1.43–4.04). In conclusion, although further research is warranted as the weight of the evidence increases, with the limited available data, and although the above results are unadjusted for other factors that may impact disease progression, smoking is most likely associated with the negative progression and adverse outcomes of COVID-19. Table 1 Overview of the five studies included in the systematic review Title Setting Population Study design and time horizon Outcomes Smoking rates by outcome Zhou et al. 9 (2020)Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study Jinyintan Hospital and Wuhan Pulmonary Hospital, Wuhan, China All adult inpatients (aged ≥18 years) with laboratory confirmed COVID-19 (191 patients) Retrospective multicenter cohort study until 31 January 2020 Mortality 54 patients died during hospitalisation and 137 were discharged Current smokers: n=11 (6%)Non-survivors: n=5 (9%)Survivors: n=6 (4%)(p=0.20) Current smoker vs non-smokerUnivariate logistic regression(OR=2.23; 95% CI: 0.65–7.63; p=0.2) Zhang et al. 10 (2020)Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China No. 7 Hospital of Wuhan, China All hospitalised patients clinically diagnosed as ‘viral pneumonia’ based on their clinical symptoms with typical changes in chest radiology (140 patients) Retrospective 16 January to 3 February 2020 Disease Severity Non-severepatients: n=82Severe patients:n=58 Disease Severity Former smokers: n=7Severe: n=4 (6.9%)Non-severe: n=3 (3.7%) (p= 0.448) Current smokers: n=2Severe: n=2 (3.4%)Non-severe: n=0 (0%) Guan et al. 12 (2019)Clinical Characteristics of Coronavirus Disease 2019 in China 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China Patients with laboratory-confirmed COVID-19 (1099 patients) Retrospective until 29 January 2020 Severity and admission to an ICU, the use of mechanical ventilation, or death Non-severe patients: n=926 Severe patients: n=173 By severity Severe cases16.9% current smokers5.2% former smokers77.9% never smokers Non-severe cases11.8% current smokers1.3% former smokers86.9% never smokers By mechanical ventilation, ICU or death Needed mechanical ventilation, ICU or died25.8% current smokers7.6% former smokers66.7% non-smokers No mechanical ventilation, ICU or death11.8% current smokers1.6% former smokers86.7% never smokers Huang et al. 11 (2020)Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China A hospital in Wuhan, China Laboratory-confirmed 2019-nCoV patients in Wuhan (41 patients) Prospective from 16 December 2019 to 2 January 2020 Mortality As of 22 January 2020, 28 (68%) of 41 patients were discharged and 6 (15%) patients died Current smokers: n=3ICU care: n=0Non-ICU care: n=3 (11%) Current smokers in ICU care vs non-ICU care patients (p=0.31) Liu et al. 13 (2019)Analysis of factors associated with disease outcomes in hospitalised patients with 2019 novel coronavirus disease Three tertiary hospitals in Wuhan, China Patients tested positive for COVID-19 (78 patients) Retrospective multicentre cohort study from 30 December 2019 to 15 January 2020 Disease progression 11 patients (14.1%) in the progression group 67 patients (85.9%) in the improvement/stabilization group 2 deaths Negative progression group: 27.3% smokersIn the improvement group: 3% smokers The negative progression group had a significantly higher proportion of patients with a history of smoking than the improvement/stabilisation group (27.3% vs 3.0%)Multivariate logistic regression analysis indicated that the history of smoking was a risk factor of disease progression (OR=14.28; 95% CI: 1.58–25.00; p= 0.018)
                Bookmark

                Author and article information

                Contributors
                maddalena.barba@gmail.com
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                15 August 2020
                15 August 2020
                2020
                : 18
                : 315
                Affiliations
                [1 ]GRID grid.417520.5, ISNI 0000 0004 1760 5276, Division of Medical Oncology 2, IRCCS IFO-Regina Elena National Cancer Institute, ; 00144 Rome, Italy
                [2 ]GRID grid.417520.5, ISNI 0000 0004 1760 5276, Scientific Direction, IRCCS IFO-Regina Elena National Cancer Institute, ; 00144 Rome, Italy
                Author information
                http://orcid.org/0000-0001-9050-2917
                Article
                2483
                10.1186/s12967-020-02483-w
                7429080
                a43c2859-b07c-4a6b-9de4-29f0c9e04d2c
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 April 2020
                : 8 August 2020
                Categories
                Commentary
                Custom metadata
                © The Author(s) 2020

                Medicine
                cancer patients,covid-19 pandemic,health care reorganization,cancer care
                Medicine
                cancer patients, covid-19 pandemic, health care reorganization, cancer care

                Comments

                Comment on this article