9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biocompatible poly( N-vinyl-2-pyrrolidone) (PVP) hydrogels have been produced by UV irradiation of aqueous polymer mixtures, using a high-pressure mercury lamp. The resulting materials have been characterized by a combination of experimental techniques, including rheology, small-angle neutron scattering (SANS), electron paramagnetic resonance (EPR), and pulsed gradient spin-echo nuclear magnetic resonance (PGSE-NMR), to put in evidence the relationship between the microstructural properties and the macrofunctional behavior of the gels. Viscoelastic measurements showed that UV photo-cross-linked PVP hydrogels present a strong gel mechanical behavior and viscoelastic moduli values similar to those of biological gels. The average distance between the cross-linking points of the polymer network was estimated from the hydrogels elastic modulus. However, SANS measurements showed that the network microstructure is highly inhomogeneous, presenting polymer-rich regions more densely cross-linked, surrounded by a water-rich environment. EPR and PGSE-NMR data further support the existence of these water-rich domains. Inclusion of a third component, such as glycerol, in the PVP aqueous mixture to be irradiated has been also investigated. A small amount of glycerol (<3% w/w) can be added keeping satisfactory properties of the hydrogel, while higher amounts significantly affect the cross-linking process.

          Related collections

          Author and article information

          Journal
          Biomacromolecules
          Biomacromolecules
          American Chemical Society (ACS)
          1526-4602
          1525-7797
          Jan 2008
          : 9
          : 1
          Affiliations
          [1 ] Dipartimento di Chimica, Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy.
          Article
          10.1021/bm7008137
          18163572
          a43e50b5-285c-410f-8248-5c19c551ab1d
          History

          Comments

          Comment on this article