21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knowledge, Attitudes, and Practices Towards COVID-19 Pandemic Among Quarantined Adults in Tigrai Region, Ethiopia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          With the onset of any novel condition, it is the “first” case identified that brings attention and sets into motion the machinery to respond – so it began with a first novel pneumonia case of unknown origin in Wuhan, China. Currently, the World Health Organization has declared SARS-CoV-2 (more commonly known as COVID-19) a public health emergency of international concern. It is projected that the path of COVID-19 could kill 50–80 million people and impacts the world’s economy in its devastating global sweep. The surge is increasing on global and national levels, causing rapid loss of life, joblessness, deterioration of the healthcare systems, and both national and global economies. In Ethiopia, the first COVID-19 case was reported in March. Since then, the government has been taking different measures to prevent its spread. Locking down all schools, declared social distancing and hand hygiene, and restricting large gatherings were some of the Ethiopian government’s actions.

          Objective

          To determine knowledge, attitudes, and practices towards COVID-19 pandemic among quarantined adults in Tigrai region, Ethiopia.

          Methods

          A total of 331 participants selected using a systematic random sampling method were included in the study. We used an interviewer-administered questionnaire. After describing the variables using frequencies, means, and standard deviations, multivariable logistic regression determined factors associated with knowledge and chi-squared tests for attitudes and practices towards COVID-19.

          Results

          The study participants were primarily males (70%) and mean age 30.5 (SD=11) years. The mean knowledge score was 8.73 (SD=2.64), with less than half 42.9% (95% CI: 37.5–48%) of the study participants were knowledgeable. Regarding the attitude questions, three-fourths of the participants believed that Ethiopia will control and win the battle against the COVID-19 pandemic. Nearly one-third of the participants replied that the Ethiopian government is handling this pandemic health crisis well. About half of the study participants reported that they had gone to crowded places in recent days, did not wear face mask when leaving home, and practiced preventive measures given by local health authorities. Knowledge score was statistically significantly associated with gender, age, and educational status of the study participants, whereas attitude and practices were significantly associated with educational status and knowledge of participants.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WHO Declares COVID-19 a Pandemic

          The World Health Organization (WHO) on March 11, 2020, has declared the novel coronavirus (COVID-19) outbreak a global pandemic (1). At a news briefing, WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and the number of countries with cases increased threefold. Further increases are expected. He said that the WHO is “deeply concerned both by the alarming levels of spread and severity and by the alarming levels of inaction,” and he called on countries to take action now to contain the virus. “We should double down,” he said. “We should be more aggressive.” Among the WHO’s current recommendations, people with mild respiratory symptoms should be encouraged to isolate themselves, and social distancing is emphasized and these recommendations apply even to countries with no reported cases (2). Separately, in JAMA, researchers report that SARS-CoV-2, the virus that causes COVID-19, was most often detected in respiratory samples from patients in China. However, live virus was also found in feces. They conclude: “Transmission of the virus by respiratory and extrarespiratory routes may help explain the rapid spread of disease.”(3). COVID-19 is a novel disease with an incompletely described clinical course, especially for children. In a recente report W. Liu et al described that the virus causing Covid-19 was detected early in the epidemic in 6 (1.6%) out of 366 children (≤16 years of age) hospitalized because of respiratory infections at Tongji Hospital, around Wuhan. All these six children had previously been completely healthy and their clinical characteristics at admission included high fever (>39°C) cough and vomiting (only in four). Four of the six patients had pneumonia, and only one required intensive care. All patients were treated with antiviral agents, antibiotic agents, and supportive therapies, and recovered after a median 7.5 days of hospitalization. (4). Risk factors for severe illness remain uncertain (although older age and comorbidity have emerged as likely important factors), the safety of supportive care strategies such as oxygen by high-flow nasal cannula and noninvasive ventilation are unclear, and the risk of mortality, even among critically ill patients, is uncertain. There are no proven effective specific treatment strategies, and the risk-benefit ratio for commonly used treatments such as corticosteroids is unclear (3,5). Septic shock and specific organ dysfunction such as acute kidney injury appear to occur in a significant proportion of patients with COVID-19–related critical illness and are associated with increasing mortality, with management recommendations following available evidence-based guidelines (3). Novel COVID-19 “can often present as a common cold-like illness,” wrote Roman Wöelfel et al. (6). They report data from a study concerning nine young- to middle-aged adults in Germany who developed COVID-19 after close contact with a known case. All had generally mild clinical courses; seven had upper respiratory tract disease, and two had limited involvement of the lower respiratory tract. Pharyngeal virus shedding was high during the first week of symptoms, peaking on day 4. Additionally, sputum viral shedding persisted after symptom resolution. The German researchers say the current case definition for COVID-19, which emphasizes lower respiratory tract disease, may need to be adjusted(6). But they considered only young and “normal” subjecta whereas the story is different in frail comorbid older patients, in whom COVID 19 may precipitate an insterstitial pneumonia, with severe respiratory failure and death (3). High level of attention should be paid to comorbidities in the treatment of COVID-19. In the literature, COVID-19 is characterised by the symptoms of viral pneumonia such as fever, fatigue, dry cough, and lymphopenia. Many of the older patients who become severely ill have evidence of underlying illness such as cardiovascular disease, liver disease, kidney disease, or malignant tumours. These patients often die of their original comorbidities. They die “with COVID”, but were extremely frail and we therefore need to accurately evaluate all original comorbidities. In addition to the risk of group transmission of an infectious disease, we should pay full attention to the treatment of the original comorbidities of the individual while treating pneumonia, especially in older patients with serious comorbid conditions and polipharmacy. Not only capable of causing pneumonia, COVID-19 may also cause damage to other organs such as the heart, the liver, and the kidneys, as well as to organ systems such as the blood and the immune system. Patients die of multiple organ failure, shock, acute respiratory distress syndrome, heart failure, arrhythmias, and renal failure (5,6). What we know about COVID 19? In December 2019, a cluster of severe pneumonia cases of unknown cause was reported in Wuhan, Hubei province, China. The initial cluster was epidemiologically linked to a seafood wholesale market in Wuhan, although many of the initial 41 cases were later reported to have no known exposure to the market (7). A novel strain of coronavirus belonging to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as the 4 human coronaviruses associated with the common cold, was subsequently isolated from lower respiratory tract samples of 4 cases on 7 January 2020. On 30 January 2020, the WHO declared that the SARS-CoV-2 outbreak constituted a Public Health Emergency of International Concern, and more than 80, 000 confirmed cases had been reported worldwide as of 28 February 2020 (8). On 31 January 2020, the U.S. Centers for Disease Control and Prevention announced that all citizens returning from Hubei province, China, would be subject to mandatory quarantine for up to 14 days. But from China COVID 19 arrived to many other countries. Rothe C et al reported a case of a 33-year-old otherwise healthy German businessman :she became ill with a sore throat, chills, and myalgias on January 24, 2020 (9). The following day, a fever of 39.1°C developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak (9). Our current understanding of the incubation period for COVID-19 is limited. An early analysis based on 88 confirmed cases in Chinese provinces outside Wuhan, using data on known travel to and from Wuhan to estimate the exposure interval, indicated a mean incubation period of 6.4 days (95% CI, 5.6 to 7.7 days), with a range of 2.1 to 11.1 days. Another analysis based on 158 confirmed cases outside Wuhan estimated a median incubation period of 5.0 days (CI, 4.4 to 5.6 days), with a range of 2 to 14 days. These estimates are generally consistent with estimates from 10 confirmed cases in China (mean incubation period, 5.2 days [CI, 4.1 to 7.0 days] and from clinical reports of a familial cluster of COVID-19 in which symptom onset occurred 3 to 6 days after assumed exposure in Wuhan (10-12). The incubation period can inform several important public health activities for infectious diseases, including active monitoring, surveillance, control, and modeling. Active monitoring requires potentially exposed persons to contact local health authorities to report their health status every day. Understanding the length of active monitoring needed to limit the risk for missing infections is necessary for health departments to effectively use resources. A recent paper provides additional evidence for a median incubation period for COVID-19 of approximately 5 days (13). Lauer et al suggest that 101 out of every 10 000 cases will develop symptoms after 14 days of active monitoring or quarantinen (13). Whether this rate is acceptable depends on the expected risk for infection in the population being monitored and considered judgment about the cost of missing cases. Combining these judgments with the estimates presented here can help public health officials to set rational and evidence-based COVID-19 control policies. Note that the proportion of mild cases detected has increased as surveillance and monitoring systems have been strengthened. The incubation period for these severe cases may differ from that of less severe or subclinical infections and is not typically an applicable measure for those with asymptomatic infections In conclusion, in a very short period health care systems and society have been severely challenged by yet another emerging virus. Preventing transmission and slowing the rate of new infections are the primary goals; however, the concern of COVID-19 causing critical illness and death is at the core of public anxiety. The critical care community has enormous experience in treating severe acute respiratory infections every year, often from uncertain causes. The care of severely ill patients, in particular older persons with COVID-19 must be grounded in this evidence base and, in parallel, ensure that learning from each patient could be of great importance to care all population,
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey

            Unprecedented measures have been adopted to control the rapid spread of the ongoing COVID-19 epidemic in China. People's adherence to control measures is affected by their knowledge, attitudes, and practices (KAP) towards COVID-19. In this study, we investigated Chinese residents' KAP towards COVID-19 during the rapid rise period of the outbreak. An online sample of Chinese residents was successfully recruited via the authors' networks with residents and popular media in Hubei, China. A self-developed online KAP questionnaire was completed by the participants. The knowledge questionnaire consisted of 12 questions regarding the clinical characteristics and prevention of COVID-19. Assessments on residents' attitudes and practices towards COVID-19 included questions on confidence in winning the battle against COVID-19 and wearing masks when going out in recent days. Among the survey completers (n=6910), 65.7% were women, 63.5% held a bachelor degree or above, and 56.2% engaged in mental labor. The overall correct rate of the knowledge questionnaire was 90%. The majority of the respondents (97.1%) had confidence that China can win the battle against COVID-19. Nearly all of the participants (98.0%) wore masks when going out in recent days. In multiple logistic regression analyses, the COVID-19 knowledge score (OR: 0.75-0.90, P<0.001) was significantly associated with a lower likelihood of negative attitudes and preventive practices towards COVID-2019. Most Chinese residents of a relatively high socioeconomic status, in particular women, are knowledgeable about COVID-19, hold optimistic attitudes, and have appropriate practices towards COVID-19. Health education programs aimed at improving COVID-19 knowledge are helpful for Chinese residents to hold optimistic attitudes and maintain appropriate practices. Due to the limited sample representativeness, we must be cautious when generalizing these findings to populations of a low socioeconomic status.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age-dependent effects in the transmission and control of COVID-19 epidemics

              The COVID-19 pandemic has shown a markedly low proportion of cases among children1-4. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from China, Italy, Japan, Singapore, Canada and South Korea. We estimate that susceptibility to infection in individuals under 20 years of age is approximately half that of adults aged over 20 years, and that clinical symptoms manifest in 21% (95% credible interval: 12-31%) of infections in 10- to 19-year-olds, rising to 69% (57-82%) of infections in people aged over 70 years. Accordingly, we find that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low. Our age-specific clinical fraction and susceptibility estimates have implications for the expected global burden of COVID-19, as a result of demographic differences across settings. In countries with younger population structures-such as many low-income countries-the expected per capita incidence of clinical cases would be lower than in countries with older population structures, although it is likely that comorbidities in low-income countries will also influence disease severity. Without effective control measures, regions with relatively older populations could see disproportionally more cases of COVID-19, particularly in the later stages of an unmitigated epidemic.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                20 October 2020
                2020
                : 13
                : 3727-3737
                Affiliations
                [1 ]Department of Nursing, College of Medicine and Health Sciences, Adigrat University , Adigrat, Ethiopia
                [2 ]College of Nursing, University of Saskatchewan , Saskatchewan, Canada
                [3 ]Department of Psychiatric Nursing, College of Medicine and Health Sciences, Adigrat University , Adigrat, Ethiopia
                [4 ]School of Public Health, College of Medicine and Health Sciences, Adigrat University , Adigrat, Ethiopia
                [5 ]School of Medicine, College of Medicine and Health Sciences, Adigrat University , Adigrat, Ethiopia
                Author notes
                Correspondence: Mekonnen Haftom Email haftommekonnen@gmail.com
                Author information
                http://orcid.org/0000-0001-5178-0025
                http://orcid.org/0000-0002-7342-9743
                http://orcid.org/0000-0003-2026-1366
                http://orcid.org/0000-0003-3567-1931
                http://orcid.org/0000-0003-2173-6685
                Article
                275744
                10.2147/IDR.S275744
                7585797
                33116693
                a44d8de3-955f-4010-bd55-3b45c482cdad
                © 2020 Haftom et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 06 August 2020
                : 07 October 2020
                Page count
                Figures: 1, Tables: 9, References: 49, Pages: 11
                Categories
                Original Research

                Infectious disease & Microbiology
                knowledge,attitude,practice,quarantine,covid-19,ethiopia
                Infectious disease & Microbiology
                knowledge, attitude, practice, quarantine, covid-19, ethiopia

                Comments

                Comment on this article