10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol Treatment Delays Growth Plate Fusion and Improves Bone Growth in Female Rabbits

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trans-resveratrol (RES), naturally produced by many plants, has a structure similar to synthetic estrogen diethylstilbestrol, but any effect on bone growth has not yet been clarified. Pre-pubertal ovary-intact New Zealand white rabbits received daily oral administration of either vehicle (control) or RES (200 mg/kg) until growth plate fusion occurred. Bone growth and growth plate size were longitudinally monitored by X-ray imaging, while at the endpoint, bone length was assessed by a digital caliper. In addition, pubertal ovariectomized (OVX) rabbits were treated with vehicle, RES or estradiol cypionate (positive control) for 7 or 10 weeks and fetal rat metatarsal bones were cultured in vitro with RES (0.03 µM–50 µM) and followed for up to 19 days. In ovary-intact rabbits, sixteen-week treatment with RES increased tibiae and vertebrae bone growth and subsequently improved final length. In OVX rabbits, RES delayed fusion of the distal tibia, distal femur and proximal tibia epiphyses and femur length and vertebral bone growth increased when compared with controls. Histomorphometrical analysis showed that RES-treated OVX rabbits had a wider distal femur growth plate, enlarged resting zone, increased number/size of hypertrophic chondrocytes, increased height of the hypertrophic zone, and suppressed chondrocyte expression of VEGF and laminin. In cultured fetal rat metatarsal bones, RES stimulated growth at 0.3 µM while at higher concentrations (10 μM and 50 μM) growth was inhibited. We conclude that RES has the potential to improve longitudinal bone growth. The effect was associated with a delay of growth plate fusion resulting in increased final length. These effects were accompanied by a profound suppression of VEGF and laminin expression suggesting that impairment of growth plate vascularization might be an underlying mechanism.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          High absorption but very low bioavailability of oral resveratrol in humans.

          The dietary polyphenol resveratrol has been shown to have chemopreventive activity against cardiovascular disease and a variety of cancers in model systems, but it is not clear whether the drug reaches the proposed sites of action in vivo after oral ingestion, especially in humans. In this study, we examined the absorption, bioavailability, and metabolism of 14C-resveratrol after oral and i.v. doses in six human volunteers. The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 +/- 90 ng/ml (about 2 microM) and a plasma half-life of 9.2 +/- 0.6 h. However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma. Most of the oral dose was recovered in urine, and liquid chromatography/mass spectrometry analysis identified three metabolic pathways, i.e., sulfate and glucuronic acid conjugation of the phenolic groups and, interestingly, hydrogenation of the aliphatic double bond, the latter likely produced by the intestinal microflora. Extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting step in resveratrol's bioavailability. Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancer-preventive and other effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation.

            Hypertrophic chondrocytes in the epiphyseal growth plate express the angiogenic protein vascular endothelial growth factor (VEGF). To determine the role of VEGF in endochondral bone formation, we inactivated this factor through the systemic administration of a soluble receptor chimeric protein (Flt-(1-3)-IgG) to 24-day-old mice. Blood vessel invasion was almost completely suppressed, concomitant with impaired trabecular bone formation and expansion of hypertrophic chondrocyte zone. Recruitment and/or differentiation of chondroclasts, which express gelatinase B/matrix metalloproteinase-9, and resorption of terminal chondrocytes decreased. Although proliferation, differentiation and maturation of chondrocytes were apparently normal, resorption was inhibited. Cessation of the anti-VEGF treatment was followed by capillary invasion, restoration of bone growth, resorption of the hypertrophic cartilage and normalization of the growth plate architecture. These findings indicate that VEGF-mediated capillary invasion is an essential signal that regulates growth plate morphogenesis and triggers cartilage remodeling. Thus, VEGF is an essential coordinator of chondrocyte death, chondroclast function, extracellular matrix remodeling, angiogenesis and bone formation in the growth plate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis.

              Resveratrol, a naturally occurring polyphenol, has cancer chemopreventive properties in preclinical models. It has been shown to downregulate the levels of insulin-like growth factor-1 (IGF-I) in rodents. The purpose of the study was to assess its safety, pharmacokinetics, and effects on circulating levels of IGF-I and IGF-binding protein-3 (IGFBP-3) after repeated dosing. Forty healthy volunteers ingested resveratrol at 0.5, 1.0, 2.5, or 5.0 g daily for 29 days. Levels of resveratrol and its metabolites were measured by high performance liquid chromatography-UV in plasma obtained before and up to 24 hours after a dose between days 21 and 28. IGF-I and IGFBP-3 were measured by ELISA in plasma taken predosing and on day 29. Resveratrol was safe, but the 2.5 and 5 g doses caused mild to moderate gastrointestinal symptoms. Resveratrol-3-O-sulfate, resveratrol-4'-O-glucuronide, and resveratrol-3-O-glucuronide were major plasma metabolites. Maximal plasma levels and areas under the concentration versus time curve for the metabolites dramatically exceeded those for resveratrol, in the case of areas under the concentration versus time curve, by up to 20.3-fold. Compared with predosing values, the ingestion of resveratrol caused a decrease in circulating IGF-I and IGFBP-3 (P<0.04 for both), respectively, in all volunteers. The decrease was most marked at the 2.5 g dose level. The results suggest that repeated administration of high doses of resveratrol generates micromolar concentrations of parent and much higher levels of glucuronide and sulfate conjugates in the plasma. The observed decrease in circulating IGF-I and IGFBP-3 might contribute to cancer chemopreventive activity. Copyright © 2010 AACR.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                28 June 2013
                : 8
                : 6
                : e67859
                Affiliations
                [1 ]Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
                [2 ]Division of Endocrinology, Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
                [3 ]Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
                INSERM U1059/LBTO, Université Jean Monnet, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EK ASC LS. Performed the experiments: EK CT KS KRK. Analyzed the data: EK. Contributed reagents/materials/analysis tools: EK CO. Wrote the paper: EK LS. Interpretation of the results: EK CT ASC KS KRK CO LS. Revising the manuscript: EK CT ASC KS KRK CO LS.

                Article
                PONE-D-12-32266
                10.1371/journal.pone.0067859
                3695926
                23840780
                a455c22a-6d75-46b1-afb5-49c197a5bc0c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 October 2012
                : 29 May 2013
                Page count
                Pages: 9
                Funding
                This study was supported by the Swedish Research Council (K2007-54X-15073-04-3), Sällskapet Barnavård, Stiftelsen Frimurare Barnhuset i Stockholm, Stiftelsen Samariten and HKH Kronprinsessan Lovisas förening för Barnasjukvård. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Bone
                Developmental Biology
                Morphogenesis
                Skeletal Development
                Organism Development
                Model Organisms
                Animal Models
                Chemistry
                Organic Chemistry
                Organic Compounds
                Small Molecules
                Medicine

                Uncategorized
                Uncategorized

                Comments

                Comment on this article