363
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cationic Antimicrobial Polymers and Their Assemblies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

          Related collections

          Most cited references311

          • Record: found
          • Abstract: found
          • Article: not found

          Persister cells, dormancy and infectious disease.

          Kim Lewis (2007)
          Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polymer vesicles.

            Vesicles are microscopic sacs that enclose a volume with a molecularly thin membrane. The membranes are generally self-directed assemblies of amphiphilic molecules with a dual hydrophilic-hydrophobic character. Biological amphiphiles form vesicles central to cell function and are principally lipids of molecular weight less than 1 kilodalton. Block copolymers that mimic lipid amphiphilicity can also self-assemble into vesicles in dilute solution, but polymer molecular weights can be orders of magnitude greater than those of lipids. Structural features of vesicles, as well as properties including stability, fluidity, and intermembrane dynamics, are greatly influenced by characteristics of the polymers. Future applications of polymer vesicles will rely on exploiting unique property-performance relations, but results to date already underscore the fact that biologically derived vesicles are but a small subset of what is physically and chemically possible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocins: developing innate immunity for food.

              Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                May 2013
                10 May 2013
                : 14
                : 5
                : 9906-9946
                Affiliations
                [1 ]Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077-05513-970, São Paulo, Brazil; E-Mail: lemelodias@ 123456usp.br
                [2 ]Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, Brazil
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: amcr@ 123456usp.br ; Tel.: +55-11-3091-1887; Fax: +55-11-3815-5579.
                Article
                ijms-14-09906
                10.3390/ijms14059906
                3676821
                23665898
                a463b239-2c10-4ce0-b592-1dcf8f3637db
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 28 February 2013
                : 20 April 2013
                : 23 April 2013
                Categories
                Review

                Molecular biology
                cationic polymers,cationic surfactants and lipids,self-assembled films and nanoparticles,antimicrobial activity

                Comments

                Comment on this article

                scite_

                Similar content106

                Cited by110

                Most referenced authors3,739