37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Direct transmission of the cat flea ( Ctenocephalides felis) between cats exhibiting social behaviour

      1 , 1 , 2 , *

      Parasite

      EDP Sciences

      Ctenocephalides felis felis, Cat, Infestation, Biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A study design was created to assess the potential for fleas to infest cats directly from other cats. In the first experiment, six cats were infested with 100 fleas each and then immediately put in contact with six flea-free cats for 24 h. After removal of all fleas the study was repeated and the contact between cats lasted 48 h. The total numbers of fleas recovered out of the 600 fleas deposited on the 6 donor cats after each infestation were 499 and 486 at 24 h and 48 h respectively. At 1 h post-contact, five fleas were found on the receiver cats, with three cats having one flea and one cat, two fleas. The number of fleas recovered on receiver cats increased towards the end of the study. At 24 h, 20% of the fleas were found on the receiver cats, and at 48 h, 23%. In a second experiment, the six flea-free cats were put in contact with the six donor cats which were each infested by 100 fleas 48 h before. Fewer fleas were found on the receiver cats ( n = 15), representing 3.8% of all fleas recovered ( n = 403). All the observed fleas had fed. The fleas collected on receiving cats comprised 10 males and 5 females, and 4 of the 5 females were engorged and contained eggs. The fleas collected on donor cats comprised 153 males and 235 females, they were all fed and all females contained eggs. This experiment demonstrated that gravid female fleas have a tendency to become permanently but not exclusively parasitic. Nevertheless, a few can change their cat host in as little as 1 h, which may play a role in the rapid introduction of a new flea population into a cat environment.

          Translated abstract

          Une étude a été conçue pour évaluer la capacité des puces à infester directement des chats à partir d’autres chats. Dans un premier dispositif expérimental, six chats ont été infestés chacun par 100 puces et ont été mis immédiatement en contact avec 6 autres chats non infestés, pour une durée de 24 heures. Cette expérience a été renouvelée à l’identique mais en gardant les chats ensemble pendant 48 heures. Le nombre total de puces récupérées à partir des 600 puces déposées à l’origine sur les 6 chats donneurs a été de 499 à 24 heures et 486 à 48 heures. Une heure après contact, 5 puces ont été trouvées sur les chat receveurs, trois chats hébergeant une puce et un chat deux puces. Le nombre de puces récupérées sur les chats receveurs a augmenté tout au long de l’étude. A 24 heures, 20% des puces ont été retrouvées sur les chats receveurs, 23% à 48 heures. Dans une deuxième expérience, les 6 chats receveurs ont été mis en contact avec les chats donneurs qui avaient été préalablement infestés par 100 puces chacun, 48 heures avant. Très peu de puces ont été retrouvées sur les chats receveurs ( n = 15), représentant 3,8% de la totalité des puces collectées ( n = 403). Toutes les puces s’étaient nourries. Les puces collectées sur les chats receveurs comprenaient 10 mâles et 5 femelles, 4 des 5 femelles étaient gorgées et contenaient des œufs. Les puces collectées sur les chats donneurs comprenaient 153 mâles et 235 femelles, toutes les puces s’étaient nourries et toutes les femelles contenaient des oeufs. Cette étude a démontré que les puces gravides ont tendance à devenir des parasites permanents mais non exclusifs. Néanmoins, certaines peuvent changer d’hôtes en un temps aussi bref qu’une heure, ce qui peut jouer un rôle dans l’introduction rapide de nouvelles populations de puces dans l’environnement de chats.

          Related collections

          Most cited references 5

          • Record: found
          • Abstract: found
          • Article: not found

          Emerging arthropod-borne diseases of companion animals in Europe.

          Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites.

            External antiparasitic drugs used in cats and dogs have evolved in terms of active ingredients but also regarding formulations. Old chemical groups have been supplanted by phenylpyrazoles, neonicotinoids, oxadiazines, spinosyns or others which are entering the veterinary market. In addition to insecticides-acaricides, insect and mite growth inhibitors (IGRs) have emerged. These IGRs are used in animals or in the environment, either alone or in combination with insecticides-acaricides. The notion of antiparasitic treatment has evolved to the concept of prevention of ectoparasite infestation but also of transmitted diseases through the introduction of formulations providing long-lasting activity. At the same time, ease-of-use has been improved with the development of spot-on formulations. Progress has also been achieved through the development of antiparasitic drugs providing control of both external and internal parasites. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host grooming efficiency for regulation of cat flea (Siphonaptera: Pulicidae) populations.

              Grooming efficiency was studied by infesting domestic short-hair cats, Felis catus L., with known numbers of cat fleas, Ctenocephalides felis felis Bouché, then collecting the cat feces and extracting the fleas to determine how many had been groomed off, varying the infestation level. Some hosts were found to be significantly more efficient at grooming fleas than others, with the best groomer removing 17.6% of its flea burden daily, compared with only 4.1% removed by the poorest groomer. Cats were more efficient at grooming fleas at infestations of 150 fleas. Mean on-host flea longevity was 7.8 d.
                Bookmark

                Author and article information

                Journal
                Parasite
                Parasite
                parasite
                Parasite
                EDP Sciences
                1252-607X
                1776-1042
                2013
                06 December 2013
                : 20
                : ( publisher-idID: parasite/2013/01 )
                Affiliations
                [1 ] Université de Toulouse, INP, ENVT, F-3107 École Nationale Vétérinaire de Toulouse 23 chemin des Capelles 31079 Toulouse France
                [2 ] Merial 29 Avenue Tony Garnier 69007 Lyon France
                Author notes
                [* ]Corresponding author: frederic.beugnet@ 123456merial.com
                Article
                parasite130069 10.1051/parasite/2013050
                10.1051/parasite/2013050
                3852276
                24309021
                © M. Franc et al., published by EDP Sciences, 2013

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 12, Pages: 6
                Categories
                Research Article

                infestation, biology, ctenocephalides felis felis, cat

                Comments

                Comment on this article