47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exchange Factor EFA6R Requires C-terminal Targeting to the Plasma Membrane to Promote Cytoskeletal Rearrangement through the Activation of ADP-ribosylation Factor 6 (ARF6)*

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The subcellular localization and cellular functions of EFA6R are unknown.

          Results: EFA6R requires dual targeting through the PH and CC domains to localize to the plasma membrane and function as a GEF.

          Conclusion: Plasma membrane-localized EFA6R stimulates actin reorganization through ARF6 activation.

          Significance: This study provides insight into the localization and cellular functions of EFA6R.

          Abstract

          ADP-ribosylation factor 6 (ARF6) small GTPase regulates membrane trafficking and cytoskeleton rearrangements at the plasma membrane (PM) by cycling between the GTP-bound active and GDP-bound inactive conformations. Guanine nucleotide exchange factors (GEFs) activate ARF6. The exchange factor for ARF6 (EFA6) R has been identified as a biomarker for ovarian cancer. EFA6R shares the catalytic Sec7, pleckstrin homology (PH), and coiled coil (CC) domains of the other EFA6 family GEFs. Here we report the functional characterization of EFA6R. Endogenous EFA6R was present in the plasma membrane fraction. The exogenously expressed FLAG- and GFP-tagged EFA6R were targeted to the PM. In vitro, GFP-EFA6R associated weakly but preferentially with phosphatidylinositol 4,5-bisphosphate (PIP 2) through the PH domain. EFA6R required both its PH and CC domains localized at the C terminus to target the PM. Consistent with this, EFA6R lacking the CC domain (EFA6RΔCC) was released from the PM into the cytosol upon PIP 2 depletion, whereas EFA6R release from the PM required both PIP 2 depletion and actin destabilization. These results suggest that the dual targeting via the PH and CC domains is important for the PM localization of EFA6R. EFA6R specifically catalyzed the GTP loading of ARF6 in mammalian cells. Moreover, EFA6R regulated ARF6 localization and thereby actin stress fiber loss. The GEF activity of EFA6R was dependent on the presence of the Sec7 domain. The PH and CC domains were also required for the in vivo GEF activity of EFA6R but could be functionally replaced by the C AAX motif of K-Ras, suggesting a role for these domains in the membrane targeting of EFA6R.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors.

            The ADP ribosylation factors (Arfs) are a family of small, ubiquitously expressed and evolutionarily conserved guanosine triphosphatases that are key regulators of vesicular transport in eukaryotic cells (D'Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347-358). Although Arfs are best known for their role in the nucleation of coat protein assembly at a variety of intracellular locations, it is increasingly apparent that they are also integral components in a number of important signaling pathways that are regulated by extracellular cues. The activation of Arfs is catalyzed by a family of guanine nucleotide exchange factors (GEFs), referred to as the Sec7 family, based on homology of their catalytic domains to the yeast Arf GEF, sec7p. While there are only six mammalian Arfs, the human genome encodes 15 Sec7 family members, which can be divided into five classes based on related domain organization. Some of this diversity arises from the tissue-specific expression of certain isoforms, but all mammalian cells appear to express at least six Arf GEFs, suggesting that Arf activation is under extensive regulatory control. Here we review recent progress in our understanding of the structure, localization and biology of the different classes of Arf GEFs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells

              Rapamycin (rapa)-induced heterodimerization of the FRB domain of the mammalian target of rapa and FKBP12 was used to translocate a phosphoinositide 5-phosphatase (5-ptase) enzyme to the plasma membrane (PM) to evoke rapid changes in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) levels. Rapa-induced PM recruitment of a truncated type IV 5-ptase containing only the 5-ptase domain fused to FKBP12 rapidly decreased PM PtdIns(4,5)P 2 as monitored by the PLCδ1PH-GFP fusion construct. This decrease was paralleled by rapid termination of the ATP-induced Ca2+ signal and the prompt inactivation of menthol-activated transient receptor potential melastatin 8 (TRPM8) channels. Depletion of PM PtdIns(4,5)P 2 was associated with a complete blockade of transferrin uptake and inhibition of epidermal growth factor internalization. None of these changes were observed upon rapa-induced translocation of an mRFP-FKBP12 fusion protein that was used as a control. These data demonstrate that rapid inducible depletion of PM PtdIns(4,5)P 2 is a powerful tool to study the multiple regulatory roles of this phospholipid and to study differential sensitivities of various processes to PtdIns(4,5)P 2 depletion.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (9650 Rockville Pike, Bethesda, MD 20814, U.S.A. )
                0021-9258
                1083-351X
                28 November 2014
                8 October 2014
                8 October 2014
                : 289
                : 48
                : 33378-33390
                Affiliations
                [1]From the Institute of Life Science 1, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
                Author notes
                [1 ] To whom correspondence should be addressed. Tel.: 44-1792-295012; Fax: 44-1792-602147; E-mail: k.venkateswarlu@ 123456swansea.ac.uk .
                Article
                M113.534156
                10.1074/jbc.M113.534156
                4246094
                25296758
                a48acd3d-7484-4369-b788-430a134d260a
                © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Unported License applies to Author Choice Articles

                History
                : 3 September 2014
                : 1 October 2014
                Categories
                Cell Biology

                Biochemistry
                actin,cytoskeleton,guanine nucleotide exchange factor (gef),ovarian cancer,plasma membrane,arf6,cc,efa6r,ph,pip2

                Comments

                Comment on this article