30
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination of Sodium Cantharidinate with Cisplatin Synergistically Hampers Growth of Cervical Cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sodium cantharidinate (SC) has been broadly applied in lung cancer treatment in China, while its specific function in cervical cancer (CC), a great contributor to death of female reproductive system cancers, remains unclear. Our research evaluated the anti-tumor effects of SC in CC and the mechanism involved.

          Methods

          First, cisplatin (DDP)-resistant Caski-1 and ME180 cell lines were developed and treated with SC. The effects of SC on CC cell growth were then evaluated. Subsequently, the genes targeted by SC were predicted via the bioinformatics website. The correlations between PTPN1 expression and tumor stage, lymph node metastasis and tumor differentiation were examined. We further conducted rescue experiments by overexpressing PTPN1 in CC cells, followed by SC and cisplatin treatments. The activation of the PI3K/AKT pathway in CC cells, and the effect of SC on the growth and drug resistance of Caski-1 cells in vivo were investigated.

          Results

          The sensitivity of Caski-1 and ME180 cells to DDP was increased after SC treatment, which also enhanced the inhibitory effect of DDP on the cell growth. By prediction, we found that SC could target PTPN1. Patients with high expression of PTPN1 had higher clinical stage, lymph node metastasis and lower tumor differentiation. SC inhibited PTPN1 expression. Overexpression of PTPN1 attenuated the effect of SC. Furthermore, PTPN1 activated the PI3K/AKT pathway. Moreover, SC treatment inhibited the growth and drug resistance of Caski-1 cells in vivo.

          Conclusion

          SC promotes drug sensitivity of CC cells to DDP by targeting PTPN1, thereby impairing the PI3K/AKT pathway.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cisplatin in cancer therapy: molecular mechanisms of action.

            Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

              Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                13 January 2021
                2021
                : 15
                : 171-183
                Affiliations
                [1 ]Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui 230022, People’s Republic of China
                Author notes
                Correspondence: Lin Yang Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui230022, People’s Republic of ChinaTel/Fax +86-0551-65908783 Email Yanglin7142@163.com
                Article
                282777
                10.2147/DDDT.S282777
                7812528
                33469269
                a48cff3e-d04b-4e8d-b35a-a8eeb31bf78d
                © 2021 Chen et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 18 September 2020
                : 16 December 2020
                Page count
                Figures: 7, Tables: 2, References: 27, Pages: 13
                Funding
                Funded by: no funding to report;
                There is no funding to report.
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                cervical cancer,sodium cantharidinate,cisplatin,ptpn1,the pi3k/akt pathway

                Comments

                Comment on this article