102
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias

      research-article
      1 , * , 1 , 1 , 2 , 2 , 3 , 3 , 4 , 5 , 1 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 9 , 19 , 20 , 10 , 6 , 21 , 22 , 1 , 1 , for the MTHFR Studies Collaborative Group
      PLoS Medicine
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease.

          Abstract

          Background

          Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene ( MTHFR) appreciably increases homocysteine levels, so “Mendelian randomization” studies using this variant as an instrumental variable could help test causality.

          Methods and Findings

          Nineteen unpublished datasets were obtained (total 48,175 CHD cases and 67,961 controls) in which multiple genetic variants had been measured, including MTHFR C677T. These datasets did not include measurements of blood homocysteine, but homocysteine levels would be expected to be about 20% higher with TT than with CC genotype in the populations studied. In meta-analyses of these unpublished datasets, the case-control CHD odds ratio (OR) and 95% CI comparing TT versus CC homozygotes was 1.02 (0.98–1.07; p = 0.28) overall, and 1.01 (0.95–1.07) in unsupplemented low-folate populations. By contrast, in a slightly updated meta-analysis of the 86 published studies (28,617 CHD cases and 41,857 controls), the OR was 1.15 (1.09–1.21), significantly discrepant ( p = 0.001) with the OR in the unpublished datasets. Within the meta-analysis of published studies, the OR was 1.12 (1.04–1.21) in the 14 larger studies (those with variance of log OR<0.05; total 13,119 cases) and 1.18 (1.09–1.28) in the 72 smaller ones (total 15,498 cases).

          Conclusions

          The CI for the overall result from large unpublished datasets shows lifelong moderate homocysteine elevation has little or no effect on CHD. The discrepant overall result from previously published studies reflects publication bias or methodological problems.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Coronary heart disease (CHD) is the leading cause of death among adults in developed countries. With age, fatty deposits (atherosclerotic plaques) coat the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant restriction of the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and sometimes fatal heart attacks. Many established risk factors for CHD, including smoking, physical inactivity, being overweight, and eating a fat-rich diet, can be modified by lifestyle changes. Another possible modifiable risk factor for CHD is a high blood level of the amino acid homocysteine. Methylene tetrahydofolate reductase, which is encoded by the MTHFR gene, uses folate to break down and remove homocysteine so fortification of cereals with folate can reduce population homocysteine blood levels. Pooled results from prospective observational studies that have looked for an association between homocysteine levels and later development of CHD suggest that the reduction in homocysteine levels that can be achieved by folate supplementation is associated with an 11% lower CHD risk.

          Why Was This Study Done?

          Prospective observational studies cannot prove that high homocysteine levels cause CHD because of confounding, the potential presence of other unknown shared characteristics that really cause CHD. However, an approach called “Mendelian randomization” can test whether high blood homocysteine causes CHD. A common genetic variant of the MTHFR gene—the C677T polymorphism—reduces MTHFR efficiency so TT homozygotes (individuals in whom both copies of the MTHFR gene have the nucleotide thymine at position 677; the human genome contains two copies of most genes) have 25% higher blood homocysteine levels than CC homozygotes. In meta-analyses (statistical pooling of the results of several studies) of published Mendelian randomized studies, TT homozygotes have a higher CHD risk than CC homozygotes. Because gene variants are inherited randomly, they are not subject to confounding, so this result suggests that high blood homocysteine causes CHD. But what if only Mendelian randomization studies that found an association have been published? Such publication bias would affect this aggregate result. Here, the researchers investigate the association of the MTHFR C677T polymorphism with CHD in unpublished datasets that have analyzed this polymorphism incidentally during other genetic studies.

          What Did the Researchers Do and Find?

          The researchers obtained 19 unpublished datasets that contained data on the MTHFR C677T polymorphism in thousands of people with and without CHD. Meta-analysis of these datasets indicates that the excess CHD risk in TT homozygotes compared to CC homozygotes was 2% (much lower than predicted from the prospective observational studies), a nonsignificant difference (that is, it could have occurred by chance). When the probable folate status of the study populations (based on when national folic acid fortification legislation came into effect) was taken into account, there was still no evidence that TT homozygotes had an excess CHD risk. By contrast, in an updated meta-analysis of 86 published studies of the association of the polymorphism with CHD, the excess CHD risk in TT homozygotes compared to CC homozygotes was 15%. Finally, in a meta-analysis of randomized trials on the use of vitamin B supplements for homocysteine reduction, folate supplementation had no significant effect on the 5-year incidence of CHD.

          What Do These Findings Mean?

          These analyses of unpublished datasets are consistent with lifelong moderate elevation of homocysteine levels having no significant effect on CHD risk. In other words, these findings indicate that circulating homocysteine levels within the normal range are not causally related to CHD risk. The meta-analysis of the randomized trials of folate supplementation also supports this conclusion. So why is there a discrepancy between these findings and those of meta-analyses of published Mendelian randomization studies? The discrepancy is too large to be dismissed as a chance finding, suggest the researchers, but could be the result of publication bias—some studies might have been prioritized for publication because of the positive nature of their results whereas the unpublished datasets used in this study would not have been affected by any failure to publish null results. Overall, these findings reveal a serious example of publication bias and argue against the use of folate supplements as a means of reducing CHD risk.

          Additional Information

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001177.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease?

          Associations between modifiable exposures and disease seen in observational epidemiology are sometimes confounded and thus misleading, despite our best efforts to improve the design and analysis of studies. Mendelian randomization-the random assortment of genes from parents to offspring that occurs during gamete formation and conception-provides one method for assessing the causal nature of some environmental exposures. The association between a disease and a polymorphism that mimics the biological link between a proposed exposure and disease is not generally susceptible to the reverse causation or confounding that may distort interpretations of conventional observational studies. Several examples where the phenotypic effects of polymorphisms are well documented provide encouraging evidence of the explanatory power of Mendelian randomization and are described. The limitations of the approach include confounding by polymorphisms in linkage disequilibrium with the polymorphism under study, that polymorphisms may have several phenotypic effects associated with disease, the lack of suitable polymorphisms for studying modifiable exposures of interest, and canalization-the buffering of the effects of genetic variation during development. Nevertheless, Mendelian randomization provides new opportunities to test causality and demonstrates how investment in the human genome project may contribute to understanding and preventing the adverse effects on human health of modifiable exposures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis.

            It has been suggested that total blood homocysteine concentrations are associated with the risk of ischemic heart disease (IHD) and stroke. To assess the relationship of homocysteine concentrations with vascular disease risk. MEDLINE was searched for articles published from January 1966 to January 1999. Relevant studies were identified by systematic searches of the literature for all reported observational studies of associations between IHD or stroke risk and homocysteine concentrations. Additional studies were identified by a hand search of references of original articles or review articles and by personal communication with relevant investigators. Studies were included if they had data available by January 1999 on total blood homocysteine concentrations, sex, and age at event. Studies were excluded if they measured only blood concentrations of free homocysteine or of homocysteine after a methionine-loading test or if relevant clinical data were unavailable or incomplete. Data from 30 prospective or retrospective studies involving a total of 5073 IHD events and 1113 stroke events were included in a meta-analysis of individual participant data, with allowance made for differences between studies, for confounding by known cardiovascular risk factors, and for regression dilution bias. Combined odds ratios (ORs) for the association of IHD and stroke with blood homocysteine concentrations were obtained by using conditional logistic regression. Stronger associations were observed in retrospective studies of homocysteine measured in blood collected after the onset of disease than in prospective studies among individuals who had no history of cardiovascular disease when blood was collected. After adjustment for known cardiovascular risk factors and regression dilution bias in the prospective studies, a 25% lower usual (corrected for regression dilution bias) homocysteine level (about 3 micromol/L [0.41 mg/L]) was associated with an 11% (OR, 0.89; 95% confidence interval [CI], 0.83-0.96) lower IHD risk and 19% (OR, 0.81; 95% CI, 0.69-0.95) lower stroke risk. This meta-analysis of observational studies suggests that elevated homocysteine is at most a modest independent predictor of IHD and stroke risk in healthy populations. Studies of the impact on disease risk of genetic variants that affect blood homocysteine concentrations will help determine whether homocysteine is causally related to vascular disease, as may large randomized trials of the effects on IHD and stroke of vitamin supplementation to lower blood homocysteine concentrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals.

              Elevated plasma homocysteine levels have been associated with higher risks of cardiovascular disease, but the effects on disease rates of supplementation with folic acid to lower plasma homocysteine levels are uncertain. Individual participant data were obtained for a meta-analysis of 8 large, randomized, placebo-controlled trials of folic acid supplementation involving 37 485 individuals at increased risk of cardiovascular disease. The analyses involved intention-to-treat comparisons of first events during the scheduled treatment period. There were 9326 major vascular events (3990 major coronary events, 1528 strokes, and 5068 revascularizations), 3010 cancers, and 5125 deaths. Folic acid allocation yielded an average 25% reduction in homocysteine levels. During a median follow-up of 5 years, folic acid allocation had no significant effects on vascular outcomes, with rate ratios (95% confidence intervals) of 1.01 (0.97-1.05) for major vascular events, 1.03 (0.97-1.10) for major coronary events, and 0.96 (0.87-1.06) for stroke. Likewise, there were no significant effects on vascular outcomes in any of the subgroups studied or on overall vascular mortality. There was no significant effect on the rate ratios (95% confidence intervals) for overall cancer incidence (1.05 [0.98-1.13]), cancer mortality (1.00 [0.85-1.18]) or all-cause mortality (1.02 [0.97-1.08]) during the whole scheduled treatment period or during the later years of it. Dietary supplementation with folic acid to lower homocysteine levels had no significant effects within 5 years on cardiovascular events or on overall cancer or mortality in the populations studied.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                February 2012
                February 2012
                21 February 2012
                : 9
                : 2
                : e1001177
                Affiliations
                [1 ]Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), University of Oxford, Oxford, United Kingdom
                [2 ]Unilever Research and Development, Vlaardingen, The Netherlands
                [3 ]Centre National de Genotypage, Evry, France
                [4 ]Herlev Hospital Department of Clinical Biochemistry, University of Copenhagen, Copenhagen, Denmark
                [5 ]deCODE Inc, Rejkavik, Iceland
                [6 ]Department of Public Health and Primary Care, University of Cambridge, United Kingdom
                [7 ]Center for Non-Communicable Diseases, Karachi, Pakistan
                [8 ]RIKEN Centre for Genomic Medicine, Yokohama, Japan
                [9 ]Population Health Research Institute, Hamilton, Canada
                [10 ]Imperial College Faculty of Medicine, University of London, London, United Kingdom
                [11 ]Luric Study Non-Profit LCC, University of Freiburg, Freiburg, Germany
                [12 ]Department of Haematology, University of Cambridge, United Kingdom
                [13 ]Mie University Life Science Research Center, Tsu, Japan
                [14 ]Department of Medical Genetics, University of Utrecht, Utrecht, The Netherlands
                [15 ]Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
                [16 ]Heart Institute, University of Ottawa, Ottawa, Canada
                [17 ]Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                [18 ]Helmholtz Zentrum, Institute of Epidemiology II, German Research Center for Environmental Health, Munich, Germany
                [19 ]McGill University Health Centre, Montreal, Canada
                [20 ]Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
                [21 ]Department of Cardiovascular Medicine, University of Oxford, United Kingdom
                [22 ]Department of Cardiovascular Sciences, University of Leicester, United Kingdom
                University of Bristol, United Kingdom
                Author notes

                Conceived and designed the experiments: RCl SP RP. Performed the experiments: RCl DAB SP RP. Analyzed the data: RCl DAB SP RP. Contributed reagents/materials/analysis tools: RCl DAB SP PV MDK ML PX BGN HH JCH DS TT SSA JCC MEK WHO YY CE BP AFRS MMR BT SY JCE TLA JK JD HW NJS RCo RP. Wrote the first draft of the manuscript: RCl SP DAB RP. Contributed to the writing of the manuscript: RCl DAB SP RP. ICMJE criteria for authorship read and met: RCl DAB SP PV MDK ML PX BGN HH JCH DS TT SSA JCC MEK WHO YY CE BP AFRS MMR BT SY JCE TLA JK JD HW NJS RCo RP. Agree with manuscript results and conclusions: RCl DAB SP PV MDK ML PX BGN HH JCH DS TT SSA JCC MEK WHO YY CE BP AFRS MMR BT SY JCE TLA JK JD HW NJS RCo RP.

                ¶ Membership of the MTHFR Studies Collaborative Group is provided in the Acknowledgments.

                Article
                PMEDICINE-D-11-01324
                10.1371/journal.pmed.1001177
                3283559
                22363213
                a4a3a637-c83e-480c-95a4-598afe081c17
                Clarke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 June 2011
                : 11 January 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Medicine

                Medicine
                Medicine

                Comments

                Comment on this article