5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glucocorticoids: Fuelling the Fire of Atherosclerosis or Therapeutic Extinguishers?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucocorticoids are steroid hormones with key roles in the regulation of many physiological systems including energy homeostasis and immunity. However, chronic glucocorticoid excess, highlighted in Cushing’s syndrome, is established as being associated with increased cardiovascular disease (CVD) risk. Atherosclerosis is the major cause of CVD, leading to complications including coronary artery disease, myocardial infarction and heart failure. While the associations between glucocorticoid excess and increased prevalence of these complications are well established, the mechanisms underlying the role of glucocorticoids in development of atheroma are unclear. This review aims to better understand the importance of glucocorticoids in atherosclerosis and to dissect their cell-specific effects on key processes (e.g., contractility, remodelling and lesion development). Clinical and pre-clinical studies have shown both athero-protective and pro-atherogenic responses to glucocorticoids, effects dependent upon their multifactorial actions. Evidence indicates regulation of glucocorticoid bioavailability at the vasculature is complex, with local delivery, pre-receptor metabolism, and receptor expression contributing to responses linked to vascular remodelling and inflammation. Further investigations are required to clarify the mechanisms through which endogenous, local glucocorticoid action and systemic glucocorticoid treatment promote/inhibit atherosclerosis. This will provide greater insights into the potential benefit of glucocorticoid targeted approaches in the treatment of cardiovascular disease.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular adhesion molecules in atherosclerosis.

          Numerous reports document the role of vascular adhesion molecules in the development and progression of atherosclerosis. Recent novel findings in the field of adhesion molecules require an updated summary of current research. In this review, we highlight the role of vascular adhesion molecules including selectins, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule1 (ICAM-1), PECAM-1, JAMs, and connexins in atherosclerosis. The immune system is important in atherosclerosis, and significant efforts are under way to understand the vascular adhesion molecule-dependent mechanisms of immune cell trafficking into healthy and atherosclerosis-prone arterial walls. This review focuses on the role of vascular adhesion molecules in the regulation of immune cell homing during atherosclerosis and discusses future directions that will lead to better understanding of this disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Animal models of atherosclerosis.

            An ideal animal model of atherosclerosis resembles human anatomy and pathophysiology and has the potential to be used in medical and pharmaceutical research to obtain results that can be extrapolated to human medicine. Moreover, it must be easy to acquire, can be maintained at a reasonable cost, is easy to handle and shares the topography of the lesions with humans. In general, animal models of atherosclerosis are based on accelerated plaque formation due to a cholesterol-rich/Western-type diet, manipulation of genes involved in the cholesterol metabolism, and the introduction of additional risk factors for atherosclerosis. Mouse and rabbit models have been mostly used, followed by pigs and non-human primates. Each of these models has its advantages and limitations. The mouse has become the predominant species to study experimental atherosclerosis because of its rapid reproduction, ease of genetic manipulation and its ability to monitor atherogenesis in a reasonable time frame. Both Apolipoprotein E deficient (ApoE(-/-)) and LDL-receptor (LDLr) knockout mice have been frequently used, but also ApoE/LDLr double-knockout, ApoE3-Leiden and PCSK9-AAV mice are valuable tools in atherosclerosis research. However, a great challenge was the development of a model in which intra-plaque microvessels, haemorrhages, spontaneous atherosclerotic plaque ruptures, myocardial infarction and sudden death occur consistently. These features are present in ApoE(-/-)Fbn1(C1039G+/-) mice, which can be used as a validated model in pre-clinical studies to evaluate novel plaque-stabilizing drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease.

              Glucocorticoids have adverse systemic effects, including obesity, hypertension, and hyperglycemia, that may predispose to cardiovascular disease. The effect of glucocorticoid use on cardiovascular disease has not been quantified. To test the hypothesis that users of exogenous glucocorticoids have an increased risk for cardiovascular disease. A cohort study using a record linkage database. Tayside, Scotland, United Kingdom. 68,781 glucocorticoid users and 82,202 nonusers without previous hospitalization for cardiovascular disease who were studied between 1993 and 1996. The average daily dose of glucocorticoid exposure during follow-up was categorized as low (inhaled, nasal, and topical only), medium (oral, rectal, or parenteral or =7.5 mg of prednisolone equivalent). Poisson regression model, sensitivity analysis, and propensity score methods were used to investigate the association between glucocorticoid exposure and cardiovascular outcome. 4383 cardiovascular events occurred in 257,487 person-years of follow-up for a rate of 17.0 (95% CI, 16.5 to 17.5) per 1000 person-years in the comparator group, and 5068 events occurred in 212,287 person-years for a rate of 23.9 (CI, 23.2 to 24.5) per 1000 person-years in the group exposed to glucocorticoids (22.1, 27.2, and 76.5 in low, medium, and high groups, respectively). The absolute risk difference was 6.9 (CI, 6.0 to 7.7) per 1000 person-years (5.1, 10.1, and 59.4, respectively). After adjustment for known covariates, the relative risk for a cardiovascular event in patients receiving high-dose glucocorticoids was 2.56 (CI, 2.18 to 2.99). Because the data were observational, residual confounding cannot be excluded. Treatment with high-dose glucocorticoids seemed to be associated with increased risk for cardiovascular disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 July 2021
                July 2021
                : 22
                : 14
                : 7622
                Affiliations
                University/British Heart Foundation Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; s1506720@ 123456sms.ed.ac.uk (C.M.); patrick.hadoke@ 123456ed.ac.uk (P.W.F.H.)
                Author notes
                [* ]Correspondence: M.Nixon@ 123456ed.ac.uk
                Author information
                https://orcid.org/0000-0002-1041-1781
                https://orcid.org/0000-0001-5437-3724
                Article
                ijms-22-07622
                10.3390/ijms22147622
                8303333
                34299240
                a4a400f3-3d97-42e3-b8bf-e04a28e31f62
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 30 June 2021
                : 14 July 2021
                Categories
                Review

                Molecular biology
                glucocorticoids,atherosclerosis,inflammation,cardiovascular diseases,glucocorticoid receptor,lipids

                Comments

                Comment on this article