108
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus.

      Nature
      Action Potentials, Animals, Animals, Genetically Modified, Anorexia, Arcuate Nucleus of Hypothalamus, physiology, Electrophysiology, Evoked Potentials, Green Fluorescent Proteins, Leptin, Luminescent Proteins, genetics, Male, Mice, Mice, Inbred C57BL, Nerve Net, Neural Inhibition, Neurons, Neuropeptide Y, metabolism, Pro-Opiomelanocortin, gamma-Aminobutyric Acid

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor-mediated regional sympathetic nerve activation by leptin.

          Leptin is a peptide hormone produced by adipose tissue which acts centrally to decrease appetite and increase energy expenditure. Although leptin increases norepinephrine turnover in thermogenic tissues, the effects of leptin on directly measured sympathetic nerve activity to thermogenic and other tissues are not known. We examined the effects of intravenous leptin and vehicle on sympathetic nerve activity to brown adipose tissue, kidney, hindlimb, and adrenal gland in anesthetized Sprague-Dawley rats. Intravenous infusion of mouse leptin over 3 h (total dose 10-1,000 microg/kg) increased plasma concentrations of immunoreactive murine leptin up to 50-fold. Leptin slowly increased sympathetic nerve activity to brown adipose tissue (+286+/-64% at 1,000 microg/kg; P = 0.002). Surprisingly, leptin infusion also produced gradual increases in renal sympathetic nerve activity (+228+/-63% at 1,000 microg/kg; P = 0.0008). The effect of leptin on sympathetic nerve activity was dose dependent, with a threshold dose of 100 microg/kg. Leptin also increased sympathetic nerve activity to the hindlimb (+287+/-60%) and adrenal gland (388+/-171%). Despite the increase in overall sympathetic nerve activity, leptin did not increase arterial pressure or heart rate. Leptin did not change plasma glucose and insulin concentrations. Infusion of vehicle did not alter sympathetic nerve activity. Obese Zucker rats, known to possess a mutation in the gene for the leptin receptor, were resistant to the sympathoexcitatory effects of leptin, despite higher achieved plasma leptin concentrations. These data demonstrate that leptin increases thermogenic sympathetic nerve activity and reveal an unexpected stimulatory effect of leptin on overall sympathetic nerve traffic.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interacting Appetite-Regulating Pathways in the Hypothalamic Regulation of Body Weight

            S P Kalra (1999)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels.

              Leptin, the protein encoded by the obese (ob) gene, is secreted from adipose tissue and is thought to act in the central nervous system to regulate food intake and body weight. It has been proposed that leptin acts in the hypothalamus, the main control centre for satiety and energy expenditure. Mutations in leptin or the receptor isoform (Ob-R[L]) present in hypothalamic neurons result in profound obesity and symptoms of non-insulin-dependent diabetes. Here we show that leptin hyperpolarizes glucose-receptive hypothalamic neurons of lean Sprague-Dawley and Zucker rats, but is ineffective on neurons of obese Zucker (fa/fa) rats. This hyperpolarization is due to the activation of a potassium current, and is not easily recovered on removal of leptin, but is reversed by applying the sulphonylurea, tolbutamide. Single-channel recordings demonstrate that leptin activates an ATP-sensitive potassium (K[ATP]) channel. Our data indicate that the K(ATP) channel may function as the molecular end-point of the pathway following leptin activation of the Ob-R(L) receptor in hypothalamic neurons.
                Bookmark

                Author and article information

                Comments

                Comment on this article