0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PROMYS – Programming synthetic networks for bio-based production of value chemicals – FP7 project

      Impact

      Science Impact, Ltd.

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The global chemical industry is transitioning from petrochemical production processes to bio-based production processes. This transition creates a clear market need for technologies that reduce the development time and cost of cell factories. PROMYS will develop, validate and implement a novel synthetic biology platform technology termed ligand responsive regulation and selection systems. Ligand responsive regulation and selection systems are biological devices that integrate biological sensing modules, within larger regulatory networks to control cellular programs. This technology will drastically accelerate the construction, optimization and performance of cell factories by enabling industrial users to impose non-natural objectives on the engineered cell factory. PROMYS will address three major challenges in metabolic engineering that limit the development of new cell factories:1) Synthetic pathway construction2) Cell factory optimization3) Control of populations during fermentation Ligand responsive regulation and selection systems will directly couple the presence of a desired chemical product or flux state within a cell, to the survival of the cell. As such, they allow the in vivo identification of the needle (e.g. functional pathway or optimized cell factories) in a haystack (e.g. large libraries). In addition, the technology developed in PROMYS will be applied to deliver increased fermentation yields by continuously selecting for high yielding cell factories within the fermentation population.PROMYS is industry driven and designed such that the expected innovations of each work package have a direct commercialization partner, which is willing to commit the necessary resources to develop commercial products from the innovation.

          Related collections

          Author and article information

          Journal
          Impact
          impact
          Science Impact, Ltd.
          2398-7073
          March 10 2017
          March 10 2017
          : 2017
          : 3
          : 45-47
          Article
          10.21820/23987073.2017.3.45
          © 2017

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Earth & Environmental sciences, Medicine, Computer science, Agriculture, Engineering

          Comments

          Comment on this article