17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.

          Related collections

          Most cited references126

          • Record: found
          • Abstract: found
          • Article: not found

          Shape control in gold nanoparticle synthesis.

          In this tutorial review, we summarise recent research into the controlled growth of gold nanoparticles of different morphologies and discuss the various chemical mechanisms that have been proposed to explain anisotropic growth. With the overview and discussion, we intended to select those published procedures that we consider more reliable and promising for synthesis of morphologies of interest. We expect this to be interesting to researchers in the wide variety of fields that can make use of metal nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gold nanocages covered by smart polymers for controlled release with near-infrared light

            Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions1-3. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound to the effector. The ultraviolet light may cause damage to biological samples and is only suitable for in vitro studies because of its quick attenuation in tissue4. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls5. They can have strong absorption (for the photothermal effect) in the near-infrared (NIR) while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a NIR laser. This system works well with various effectors without involving sophiscated syntheses, and is well-suited for in vivo studies due to the high transparency of soft tissue in NIR6.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress.

              Many different systems and strategies have been evaluated for drug targeting to tumors over the years. Routinely used systems include liposomes, polymers, micelles, nanoparticles and antibodies, and examples of strategies are passive drug targeting, active drug targeting to cancer cells, active drug targeting to endothelial cells and triggered drug delivery. Significant progress has been made in this area of research both at the preclinical and at the clinical level, and a number of (primarily passively tumor-targeted) nanomedicine formulations have been approved for clinical use. Significant progress has also been made with regard to better understanding the (patho-) physiological principles of drug targeting to tumors. This has led to the identification of several important pitfalls in tumor-targeted drug delivery, including I) overinterpretation of the EPR effect; II) poor tumor and tissue penetration of nanomedicines; III) misunderstanding of the potential usefulness of active drug targeting; IV) irrational formulation design, based on materials which are too complex and not broadly applicable; V) insufficient incorporation of nanomedicine formulations in clinically relevant combination regimens; VI) negligence of the notion that the highest medical need relates to metastasis, and not to solid tumor treatment; VII) insufficient integration of non-invasive imaging techniques and theranostics, which could be used to personalize nanomedicine-based therapeutic interventions; and VIII) lack of (efficacy analyses in) proper animal models, which are physiologically more relevant and more predictive for the clinical situation. These insights strongly suggest that besides making ever more nanomedicine formulations, future efforts should also address some of the conceptual drawbacks of drug targeting to tumors, and that strategies should be developed to overcome these shortcomings. Copyright © 2011 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                03 November 2015
                December 2015
                : 5
                : 4
                : 1853-1879
                Affiliations
                UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Campus Caparica, 2829-516 Caparica, Portugal; E-Mails: pm.pedrosa@ 123456campus.fct.unl.pt (P.P.); r.vinhas@ 123456fct.unl.pt (R.V.); ma.fernandes@ 123456fct.unl.pt (A.F.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: pmvb@ 123456fct.unl.pt ; Tel./Fax: +351-212-948-530.
                Article
                nanomaterials-05-01853
                10.3390/nano5041853
                5304792
                28347100
                a4c73797-68f2-44f6-aef6-e3d8bee0f137
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 August 2015
                : 27 October 2015
                Categories
                Review

                nanotheranostics,diagnostics,targeted therapy,cancer,gold nanoparticles,precision medicine,theranostics

                Comments

                Comment on this article