1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sticking without contact: Elastohydrodynamic adhesion

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The adhesion between dry solid surfaces is typically governed by contact forces, involving surface forces and elasticity. For surfaces immersed in a fluid, out-of-contact adhesion arises due to the viscous resistance to the opening of the liquid gap. While the adhesion between dry solids is described by the classical JKR theory, there is no equivalent framework for the wet adhesion of soft solids. Here, we investigate theoretically the viscous adhesion emerging during the separation of a sphere from an elastic substrate. The suction pressure within the thin viscous film between the solids induces significant elastic displacements. Unexpectedly, the elastic substrate closely follows the motion of the sphere, leading to a sticking without contact. The initial dynamics is described using similarity solutions, resulting in a nonlinear adhesion force that grows in time as F ~ t^(2/3). When elastic displacements become large enough, another similarity solution emerges that leads to a violent snap-off of the adhesive contact through a finite-time singularity. The observed phenomenology bears a strong resemblance with JKR theory, and is relevant for a wide range of applications involving viscous adhesion.

          Related collections

          Author and article information

          Journal
          16 September 2024
          Article
          2409.10723
          a4ca8c53-c7c7-44cd-9105-c8932a63731f

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          12 pages, 8 figures
          cond-mat.soft physics.flu-dyn

          Condensed matter,Thermal physics & Statistical mechanics
          Condensed matter, Thermal physics & Statistical mechanics

          Comments

          Comment on this article