6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nebulized Heparin Attenuates Pulmonary Coagulopathy and Inflammation through Alveolar Macrophages in a Rat Model of Acute Lung Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective  Alveolar macrophages play a key role in the development and resolution of acute respiratory distress syndrome (ARDS), modulating the inflammatory response and the coagulation cascade in lungs. Anti-coagulants may be helpful in the treatment of ARDS. This study investigated the effects of nebulized heparin on the role of alveolar macrophages in limiting lung coagulation and inflammatory response in an animal model of acute lung injury (ALI).

          Methods  Rats were randomized to four experimental groups. In three groups, ALI was induced by intratracheal instillation of lipopolysaccharide (LPS) and heparin was nebulized at constant oxygen flow: the LPS/Hep group received nebulized heparin 4 and 8 hours after injury; the Hep/LPS/Hep group received nebulized heparin 30 minutes before and 4 and 8 hours after LPS-induced injury; the LPS/Sal group received nebulized saline 4 and 8 hours after injury. The control group received only saline. Animals were exsanguinated 24 hours after LPS instillation. Lung tissue, bronchoalveolar lavage fluid (BALF) and alveolar macrophages isolated from BALF were analysed.

          Results  LPS increased protein concentration, oedema and neutrophils in BALF as well as procoagulant and proinflammatory mediators in lung tissue and alveolar macrophages. In lung tissue, nebulized heparin attenuated ALI through decreasing procoagulant (tissue factor, thrombin–anti-thrombin complexes, fibrin degradation products) and proinflammatory (interleukin 6, tumour necrosis factor alpha) pathways. In alveolar macrophages, nebulized heparin reduced expression of procoagulant genes and the effectors of transforming growth factor beta (Smad 2, Smad 3) and nuclear factor kappa B (p-selectin, CCL-2). Pre-treatment resulted in more pronounced attenuation.

          Conclusion  Nebulized heparin reduced pulmonary coagulopathy and inflammation without producing systemic bleeding, partly by modulating alveolar macrophages.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial.

          Activation of the coagulation system and depletion of endogenous anticoagulants are frequently found in patients with severe sepsis and septic shock. Diffuse microthrombus formation may induce organ dysfunction and lead to excess mortality in septic shock. Antithrombin III may provide protection from multiorgan failure and improve survival in severely ill patients. To determine if high-dose antithrombin III (administered within 6 hours of onset) would provide a survival advantage in patients with severe sepsis and septic shock. Double-blind, placebo-controlled, multicenter phase 3 clinical trial in patients with severe sepsis (the KyberSept Trial) was conducted from March 1997 through January 2000. A total of 2314 adult patients were randomized into 2 equal groups of 1157 to receive either intravenous antithrombin III (30 000 IU in total over 4 days) or a placebo (1% human albumin). All-cause mortality 28 days after initiation of study medication. Overall mortality at 28 days in the antithrombin III treatment group was 38.9% vs 38.7% in the placebo group (P =.94). Secondary end points, including mortality at 56 and 90 days and survival time in the intensive care unit, did not differ between the antithrombin III and placebo groups. In the subgroup of patients who did not receive concomitant heparin during the 4-day treatment phase (n = 698), the 28-day mortality was nonsignificantly lower in the antithrombin III group (37.8%) than in the placebo group (43.6%) (P =.08). This trend became significant after 90 days (n = 686; 44.9% for antithrombin III group vs 52.5% for placebo group; P =.03). In patients receiving antithrombin III and concomitant heparin, a significantly increased bleeding incidence was observed (23.8% for antithrombin III group vs 13.5% for placebo group; P<.001). High-dose antithrombin III therapy had no effect on 28-day all-cause mortality in adult patients with severe sepsis and septic shock when administered within 6 hours after the onset. High-dose antithrombin III was associated with an increased risk of hemorrhage when administered with heparin. There was some evidence to suggest a treatment benefit of antithrombin III in the subgroup of patients not receiving concomitant heparin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome.

            Changes in the alveolar hemostatic balance in severe pneumonia were compared with those in the acute respiratory distress syndrome (ARDS). Analysis was performed in bronchoalveolar lavage fluids (BALF) of patients with ARDS triggered by nonpulmonary underlying events in the absence of lung infection (ARDS; n = 25), pneumonia demanding mechanical ventilation (PNEU-vent; n = 114), spontaneously breathing patients with pneumonia (PNEU-spon; n = 40), and ARDS in combination with lung infection (ARDS+PNEU; n = 43); comparison with healthy control subjects (n = 35) was performed. In all groups of patients, BALF total procoagulant activity was increased by nearly two orders of magnitude, being largely attributable to the tissue factor pathway of coagulation. Concomitantly, markedly reduced overall fibrinolytic capacity (fibrin plate assay) was noted in the lavage fluids of all patients. BALF levels of urokinase-type plasminogen activator were significantly reduced throughout, whereas the lavage concentrations of tissue-type plasminogen activator did not differ from those in control subjects. In addition, markedly enhanced levels of plasminogen activator- inhibitor I and alpha(2)-antiplasmin were noted in ARDS, ARDS+PNEU, and PNEU-vent, but not in PNEU-spon. In all groups of patients, the changes in the lavage enzymatic activities were paralleled by manifold increased BALF concentrations of fibrinopeptide A and D-dimer, reflecting in vivo coagulation processes. Within the overall number of patients with pneumonia, changes in the alveolar hemostatic balance were more prominent in alveolar and interstitial pneumonia than in bronchopneumonia. Acute inflammatory lung injury, whether triggered by nonpulmonary systemic events or primary lung infection, is thus consistently characterized by both enhanced procoagulant and depressed fibrinolytic activities in the alveolar lining layer, with the appearance of fibrin formation in this compartment. Profile and extent of changes in severe pneumonia demanding respirator therapy are virtually identical to those in ARDS, whereas somewhat less prominent alterations of the alveolar hemostatic balance are noted in spontaneously breathing patients with pneumonia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor.

              The alveolar compartment is a procoagulant antifibrinolytic environment in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). A study was undertaken to test the hypothesis that the alveolar epithelium can initiate intra-alveolar coagulation by expressing active tissue factor (TF). Using an in vitro cell surface TF assay and TF ELISA, the activity and production of TF in cultured alveolar epithelial (A549) cells following exposure to cytomix (tumour necrosis factor alpha, interleukin 1beta and interferon gamma) was measured. TF gene transcription was measured by semi-quantitative reverse-transcription PCR. Immunohistochemistry for TF was performed on lung sections from patients with ARDS and controls. TF protein levels were measured by ELISA in undiluted pulmonary oedema fluid from patients with ALI/ARDS and compared with control patients with hydrostatic pulmonary oedema. TF activity, mRNA and protein levels increased in A549 cells after stimulation with cytomix. Increased TF activity was also seen in A549 cells following incubation with pulmonary oedema fluid from patients with ALI/ARDS. Immunohistochemistry for TF in human lung tissue from patients with ARDS showed prominent TF staining in alveolar epithelial cells as well as intra-alveolar macrophages and hyaline membranes. TF antigen levels in oedema fluid (median 37 113 (IQR 14 956-73 525) pg/ml) were significantly higher than in plasma (median 336 (IQR 165-669) pg/ml, p<0.001) in patients with ALI/ARDS, and TF procoagulant activity in oedema fluid was much higher than in plasma of these patients. Higher plasma levels were associated with mortality. The alveolar epithelium is capable of modulating intra-alveolar coagulation through upregulation of TF following exposure to inflammatory stimuli and may contribute to intra-alveolar fibrin deposition in ARDS.
                Bookmark

                Author and article information

                Journal
                Thromb Haemost
                Thromb. Haemost
                10.1055/s-00035024
                Thrombosis and Haemostasis
                Schattauer GmbH (Stuttgart )
                0340-6245
                2567-689X
                November 2017
                30 November 2017
                : 117
                : 11
                : 2125-2134
                Affiliations
                [1 ]Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
                [2 ]Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
                [3 ]Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
                [4 ]Critical Care Center, Corporació Sanitària i Universitària Parc Taulí-UAB, Sabadell, Catalonia, Spain
                Author notes
                Address for correspondence Laura Chimenti, PhD Institut d'Investigació i Innovació Parc Taulí (I3PT) Sabadell, Parc Taulí 1, 08208, SabadellSpain laurachimenti@ 123456yahoo.it
                Article
                170347
                10.1160/TH17-05-0347
                6328369
                29202212
                a4cd7928-07ed-4ffd-81cc-26d530f7ca68

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.

                History
                : 20 May 2017
                : 20 July 2017
                Categories
                Blood Cells, Inflammation and Infection

                acute respiratory distress syndrome,acute lung injury,anti-coagulants,heparin,alveolar macrophages

                Comments

                Comment on this article