Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Preparation, Characteristics, and Formation Mechanism of Oyster Peptide-Zinc Nanoparticles

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oyster peptide–zinc nanoparticles (OPZNPs) (28–108 nm) were prepared in the presence of 0.5%–0.9% zinc sulfate at pH 6.0–11.0. The obtained nanoparticles exhibited uniform size distribution and spherical shapes. Nanoparticle characteristics, such as size, surface charge, and hydrophobicity, could be adjusted by controlling zinc sulfate concentration and environmental pH. Increasing pH value or decreasing zinc sulfate concentration tended to reduce nanoparticle size and increase nanoparticle surface charge and hydrophobicity. OPZNPs presented good stability at near-neutral pH and could be stored for at least 20 days at 4℃. The results of the peptide conformation study and nanoparticle dissociation test proved that zinc ions and carboxyl groups are the key factors that affect OPZNP formation. The intermolecular combinations of carboxyl groups via zinc bridging facilitated the aggregation of oyster peptides. Nanoparticle formation was accompanied by aggregate association and conformational changes. These changes included increments in β-sheets, especially intermolecular β-sheets, at the expense of α-helixes. Overall, this work provided a green alternative route for the synthesis of OPZNPs.

          Related collections

          Author and article information

          Journal
          JOUC
          Journal of Ocean University of China
          Science Press and Springer (China )
          1672-5182
          06 July 2019
          01 October 2019
          : 18
          : 4
          : 953-961
          Affiliations
          1Guangxi Colleges and Universities Key Laboratory of Development and High-Value Utilization of Beibu Gulf Seafood Resource, Qinzhou 535011, China
          2College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
          Author notes
          *Corresponding author: HUANG Hai
          Article
          s11802-019-4007-2
          10.1007/s11802-019-4007-2
          Copyright © Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019.

          The copyright to this article, including any graphic elements therein (e.g. illustrations, charts, moving images), is hereby assigned for good and valuable consideration to the editorial office of Journal of Ocean University of China, Science Press and Springer effective if and when the article is accepted for publication and to the extent assignable if assignability is restricted for by applicable law or regulations (e.g. for U.S. government or crown employees).

          Product
          Self URI (journal-page): https://www.springer.com/journal/11802

          Comments

          Comment on this article