18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      1H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Heterogeneity of COPD results in different therapeutic effects for different patients receiving the same treatment. COPD patients need to be individually treated according to their own characteristics. The purpose of this study was to explore the differences in different CT phenotypic COPD by molecular metabolites through the use of metabolomics.

          Methods

          According to the characteristics of CT imaging, 42 COPD patients were grouped into phenotype E (n=20) or phenotype M (n=24). Each COPD patient received tiotropium bromide powder for inhalation for a therapeutic period of 3 months. All subjects were assigned into phenotype E in pre-therapy (EB, n=20), phenotype E in post-therapy (EA, n=20), phenotype M in pre-therapy (MB, n=22), phenotype M in post-therapy (MA, n=22), or normal control (N, n=24). The method of metabolomics based on 1H nuclear magnetic resonance ( 1H-NMR) was used to compare the changes in serum metabolites between COPD patients and normal controls and between different phenotypes of COPD patients in pre- and post-therapy.

          Results

          Patients with COPD phenotype E responded better to tiotropium bromide than patients with COPD phenotype M in terms of pulmonary function and COPD assessment test scores. There were differences in metabolites in COPD patients vs normal control people. Differences were also observed between different COPD phenotypic patients receiving the treatment in comparison with those who did not receive treatment. The changes of metabolites involved lactate, phenylalanine, fructose, glycine, asparagine, citric acid, pyruvic acid, proline, acetone, ornithine, lipid, pyridoxine, maltose, betaine, lipoprotein, and so on. These identified metabolites covered the metabolic pathways of amino acids, carbohydrates, lipids, genetic materials, and vitamin.

          Conclusion

          The efficacy of tiotropium bromide on COPD phenotype E is better than that of phenotype M. Metabolites detected by 1H-NMR metabolomics have potentialities of differentiation of COPD and healthy people, discrimination of different COPD phenotypes, and giving insight into the individualized treatment of COPD.

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism.

          Betaine is an essential osmolyte and source of methyl groups and comes from either the diet or by the oxidation of choline. Its metabolism methylates homocysteine to methionine, also producing N,N-dimethylglycine. Betaine insufficiency is associated with the metabolic syndrome, lipid disorders and diabetes, and may have a role in vascular and other diseases. Betaine is important in development, from the pre-implantation embryo to infancy. Betaine supplementation improves animal and poultry health, but the effect of long-term supplementation on humans is not known, though reports that it improves athletic performance will stimulate further studies. Subsets of the population that may benefit from betaine supplementation could be identified by the laboratory, in particular those who excessively lose betaine through the urine. Plasma betaine is highly individual, in women typically 20-60 micromol/L and in men 25-75 micromol/L. Plasma dimethylglycine is typically <10 micromol/L. Urine betaine excretion is minimal, even following a large betaine dose. It is constant, highly individual and normally <35 mmol/mole creatinine. The preferred method of betaine measurement is by LC-MS/MS, which is rapid and capable of automation. Slower HPLC methods give comparable results. Proton NMR spectrometry is another option but caution is needed to avoid confusion with trimethylamine-N-oxide. 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computed tomography in pulmonary emphysema.

            Fifty-three patients with chronic obstructive airways disease and 19 age-matched controls were studied using computed tomography (CT). The study shows that CT can detect the presence and distribution of pulmonary emphysema. Pulmonary vascular changes detectable on chest radiography correlate well with lung density as measured by CT. Patients with marked CT changes of emphysema had significantly greater impairment of diffusion capacity and FEV1.0/VC than the patients with less severe changes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Creating scenarios of the impact of copd and their relationship to copd assessment test (CAT™) scores

              Background The COPD Assessment Test (CAT™) is a new short health status measure for routine use. New questionnaires require reference points so that users can understand the scores; descriptive scenarios are one way of doing this. A novel method of creating scenarios is described. Methods A Bland and Altman plot showed a consistent relationship between CAT scores and scores obtained with the St George's Respiratory Questionnaire for COPD (SGRQ-C) permitting a direct mapping process between CAT and SGRQ items. The severity associated with each CAT item was calculated using a probabilistic model and expressed in logits (log odds of a patient of given severity affirming that item 50% of the time). Severity estimates for SGRQ-C items in logits were also available, allowing direct comparisons with CAT items. CAT scores were categorised into Low, Medium, High and Very High Impact. SGRQ items of corresponding severity were used to create scenarios associated with each category. Results Each CAT category was associated with a scenario comprising 12 to 16 SGRQ-C items. A severity 'ladder' associating CAT scores with exemplar health status effects was also created. Items associated with 'Low' and 'Medium' Impact appeared to be subjectively quite severe in terms of their effect on daily life. Conclusions These scenarios provide users of the CAT with a good sense of the health impact associated with different scores. More generally they provide a surprising insight into the severity of the effects of COPD, even in patients with apparently mild-moderate health status impact.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                27 September 2018
                : 13
                : 2985-2997
                Affiliations
                [1 ]Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, People’s Republic of China, dailuming6622@ 123456hotmail.com
                [2 ]Department of Respiratory, Baoshan People’s Hospital, Baoshan 678000, People’s Republic of China
                Author notes
                Correspondence: Lu-Ming Dai, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, No 295 Xi Chang Road, Kunming 650032, People’s Republic of China, Tel +86 1 311 695 2250, Email dailuming6622@ 123456hotmail.com
                Article
                copd-13-2985
                10.2147/COPD.S173264
                6166752
                30310274
                a4e7eebb-1144-4abe-9232-86661aa302d8
                © 2018 Tan et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Respiratory medicine
                copd,metabolomics,tiotropium bromide,ct phenotyping,individualized treatment
                Respiratory medicine
                copd, metabolomics, tiotropium bromide, ct phenotyping, individualized treatment

                Comments

                Comment on this article