9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Feedbacks between plant N demand and rhizosphere priming depend on type of mycorrhizal association

      , , , , ,
      Ecology Letters
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

          The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?

            Progress towards understanding the extent to which mycorrhizal fungi are involved in the mobilization of nitrogen (N) and phosphorus (P) from natural substrates is reviewed here. While mycorrhiza research has emphasized the role of the symbiosis in facilitation of capture of these nutrients in ionic form, attention has shifted since the mid-1980s to analysing the mycorrhizal fungal abilities to release N and P from the detrital materials of microbial faunal and plant origins, which are the primary sources of these elements in terrestrial ecosystems. Ericoid, and some ectomycorrhizal fungi have the potential to be directly involved in attack both on structural polymers, which may render nutrients inaccessible, and in mobilization of N and P from the organic polymers in which they are sequestered. The advantages to the plant of achieving intervention in the microbial mobilization-immobilization cycles are stressed. While the new approaches may initially lack the precision achieved in studies of readily characterized ionic forms of N and P, they do provide insights of greater ecological relevance. The results support the hypothesis that selection has favoured ericoid and ectomycorrhizal systems with well developed saprotrophic capabilities in those ecosystems characterized by retention of N and P as organic complexes in the soil. The need for further investigation of the abilities of arbuscular mycorrhizal fungi to intervene in nutrient mobilization processes is stressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CO2 enhancement of forest productivity constrained by limited nitrogen availability.

              Stimulation of terrestrial plant production by rising CO(2) concentration is projected to reduce the airborne fraction of anthropogenic CO(2) emissions. Coupled climate-carbon cycle models are sensitive to this negative feedback on atmospheric CO(2), but model projections are uncertain because of the expectation that feedbacks through the nitrogen (N) cycle will reduce this so-called CO(2) fertilization effect. We assessed whether N limitation caused a reduced stimulation of net primary productivity (NPP) by elevated atmospheric CO(2) concentration over 11 y in a free-air CO(2) enrichment (FACE) experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee. During the first 6 y of the experiment, NPP was significantly enhanced in forest plots exposed to 550 ppm CO(2) compared with NPP in plots in current ambient CO(2), and this was a consistent and sustained response. However, the enhancement of NPP under elevated CO(2) declined from 24% in 2001-2003 to 9% in 2008. Global analyses that assume a sustained CO(2) fertilization effect are no longer supported by this FACE experiment. N budget analysis supports the premise that N availability was limiting to tree growth and declining over time--an expected consequence of stand development, which was exacerbated by elevated CO(2). Leaf- and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to elevated CO(2); these observations are consistent with stand-level model projections. This FACE experiment provides strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Ecol Lett
                Wiley-Blackwell
                1461023X
                August 2017
                August 02 2017
                : 20
                : 8
                : 1043-1053
                Article
                10.1111/ele.12802
                a4ee8e04-d86d-40b5-9269-798273a16ccb
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article