11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          See Crinion (doi: [Related article:]10.1093/brain/awy075) for a scientific commentary on this article.

          Chesters et al. present the first randomized controlled trial of transcranial direct current stimulation (tDCS) as an adjunctive therapy for stuttering. Thirty adult males underwent a five-day intervention using choral and metronome-timed speech to induce fluency while receiving anodal or sham stimulation. tDCS reduced disfluency for at least 6 weeks.

          Abstract

          See Crinion (doi: [Related article:]10.1093/brain/awy075) for a scientific commentary on this article.

          Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving transcranial direct current stimulation compared with the sham group, in whom fluency was unchanged from baseline. We conclude that transcranial direct current stimulation combined with behavioural fluency intervention can improve fluency in adults who stutter. Transcranial direct current stimulation thereby offers a potentially useful adjunct to future speech therapy interventions for this population, for whom fluency therapy outcomes are currently limited.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiological basis of transcranial direct current stimulation.

            Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using transcranial direct-current stimulation to treat stroke patients with aphasia.

              Recent research suggests that increased left hemisphere cortical activity, primarily of the left frontal cortex, is associated with improved naming performance in stroke patients with aphasia. Our aim was to determine whether anodal transcranial direct-current stimulation (tDCS), a method thought to increase cortical excitability, would improve naming accuracy in stroke patients with aphasia when applied to the scalp overlying the left frontal cortex. Ten patients with chronic stroke-induced aphasia received 5 days of anodal tDCS (1 mA for 20 minutes) and 5 days of sham tDCS (for 20 minutes, order randomized) while performing a computerized anomia treatment. tDCS positioning was guided by a priori functional magnetic resonance imaging results for each individual during an overt naming task to ensure that the active electrode was placed over structurally intact cortex. Results revealed significantly improved naming accuracy of treated items (F[1,9]=5.72, P<0.040) after anodal tDCS compared with sham tDCS. Patients who demonstrated the most improvement were those with perilesional areas closest to the stimulation site. Crucially, this treatment effect persisted at least 1 week after treatment. Our findings suggest that anodal tDCS over the left frontal cortex can lead to enhanced naming accuracy in stroke patients with aphasia and, if proved to be effective in larger studies, may provide a supplementary treatment approach for anomia.
                Bookmark

                Author and article information

                Journal
                Brain
                Brain
                brainj
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                April 2018
                31 January 2018
                31 January 2018
                : 141
                : 4
                : 1161-1171
                Affiliations
                [1 ]Department of Experimental Psychology, University of Oxford, Oxford, UK
                [2 ]School of Psychology, University of Nottingham, Nottingham, UK
                Author notes
                Correspondence to: Jennifer Chesters Department of Experimental Psychology, University of Oxford, Oxford, UK E-mail: jennifer.chesters@ 123456psy.ox.ac.uk

                See Crinion (doi: [Related article:]10.1093/brain/awy075) for a scientific commentary on this article.

                Article
                awy011
                10.1093/brain/awy011
                6019054
                29394325
                a4ef7473-096b-4370-ba56-6a3534b2c39a
                © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 August 2017
                : 29 October 2017
                : 1 December 2017
                Page count
                Pages: 11
                Categories
                Original Articles

                Neurosciences
                stammering,speech disorder,non-invasive brain stimulation,randomized controlled trial

                Comments

                Comment on this article