1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Long noncoding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) has been revealed to be involved in the tumorigenesis of neuroblastoma. However, the role of SNHG16 in regulating cisplatin sensitivity in neuroblastoma remains largely unknown.

          Methods

          The expression of SNHG16, microRNA (miR)-338-3p and polo-like kinase 4 (PLK4) mRNA was measured using quantitative real-time polymerase chain reaction. The protein levels of PLK4, multidrug resistance protein 1 (MRP1), multidrug-resistance gene 1-type p-glycoprotein (P-gp) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins were detected by Western blot. The half maximal inhibitory concentration (IC50) value, cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 assays or Transwell assay. Apoptotic cells were measured by Flow cytometry. The interaction between miR-338-3p and SNHG16 or PLK4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. In vivo experiments were conducted through the murine xenograft model.

          Results

          SNHG16 was up-regulated, while miR-338-3p was down-regulated in cisplatin-resistant neuroblastoma tissues and cells. SNHG16 silencing weakened cisplatin resistance, reflected by the reduction of IC50 value, down-regulation of MRP-1 and P-gp protein expression, suppression of proliferation, migration and invasion, as well as enhancement of apoptosis in SNHG16 deletion cisplatin-resistant neuroblastoma cells. Besides that, SNHG16 could regulate PLK4 expression by sponging miR-338-3p and SNHG16/miR-338-3p/PLK4 axis could affect the activation of PI3K/AKT pathway in cisplatin-resistant neuroblastoma cells. MiR-338-3p inhibition attenuated SNHG16 deletion-mediated impairment on cisplatin resistance and PLK4 overexpression reversed the decrease of cisplatin-resistance induced by miR-338-3p re-expression. Furthermore, SNHG16 knockdown contributed to the anti-tumor effect of cisplatin in neuroblastoma in vivo.

          Conclusion

          SNHG16 contributed to the tumorigenesis and cisplatin resistance in neuroblastoma possibly through miR-338-3p/PLK4 pathway, indicating a novel insight for overcoming chemoresistance in neuroblastoma patients.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways.

          Competing endogenous RNAs (ceRNAs) are RNA transcripts which can communicate with each other by decreasing targeting concentration of micro-RNA (miRNA) with the derepression of other messenger RNAs (mRNAs) having the common miRNA response elements (MREs). Oncocers are ceRNAs taking crucial roles in oncogenic pathways processed in many types of cancer, and this study analyzes oncocer-mediated cross-talk by sponging microRNAs (miRNAs) in these pathways. While doing this, breast, liver, colon, prostate, gastric, lung, endometrium, thyroid and epithelial cancers and melanoma, rhabdomyosarcoma, glioblastoma, acute promyelocytic leukemia, retinoblastoma, and neuroblastoma were analyzed with respect to ceRNA-based carcinogenesis. This study defines, firstly, oncocers in the literature and contains all oncocer-related findings found up to now. Therefore, it will help to increase our comprehension about oncocer-mediated mechanisms. Via this study, a novel perspective would be produced to make clear cancer mechanisms and suggest novel approaches to regulate ceRNA networks via miRNA competition for cancer therapeutics. Graphical Abstract Multiple RNA transcripts have common MREs for the similar miRNA in their 3'-untranslated regions (3'-UTRs). Upregulation of ceRNAs rises the abundance of specific MREs and shifts the miRNA pool distribution, as a result, leading to the increased expression of target mRNA. The depot of genomic mutations and epigenetic alterations changing gene function and expression causes cancers. Herewith, genome-based somatic base-pair mutations, DNA copy number alterations, chromosomal translocation, also transcript fusions, alternative splicing are usually seen in cancer situations. Consequently, such cases causing changed UTR expression in transcripts influence the levels of MRE or present new MREs into the cells. Alterations in MREs of ceRNAs affect the capability of a specific mRNA transcript to attach or titrate miRNAs. As a result, the disturbed ceRNA network can lead to diseases and cancers. As a new term in RNA world, oncocers-the name for ceRNAs taking crucial roles in oncogenic pathways-are processed in many types of cancer, and oncocer-mediated cross-talk are analyzed by sponging miRNAs in these pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5.

            Long noncoding RNAs (lncRNAs) have been proved to play important roles in cellular processes of cancer, including the development, proliferation, and migration of cancer cells. In the present study, we demonstrated small nucleolar RNA host gene 16 (SNHG16) as an oncogene on cell migration in breast cancer. Expression levels of SNHG16 were found to be frequently higher in breast cancer tissues than in the paired noncancerous tissues. Gain- and loss-of-function studies proved that SNHG16 significantly promoted breast cancer cell migration. We predicted SNHG16 as a competitive endogenous RNA (ceRNA) of E2F transcription factor 5 protein (E2F5) via competition for the shared miR-98 through bioinformatics analysis, and proved this regulation using relative quantitative real-time PCR (qRT-PCR), western blot, RNA immunoprecipitation (RIP) assay and luciferase reporter assay. In addition, we identified a positive correlation between SNHG16 and E2F5 in breast cancer tissues. Furthermore, we demonstrated that forced expression of miR-98 could partially abrogate SNHG16-mediated increase of breast cancer cells migration, suggesting that SNHG16 promoted cell migration in a miR-98 dependent manner. Taken together, our findings indicated that SNHG16 induces breast cancer cell migration by competitively binding miR-98 with E2F5, and SNHG16 can serve as a potential therapeutic target for breast cancer treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              LncRNA UCA1 in anti-cancer drug resistance

              The pivotal role of the long non-coding RNA (lncRNA) urothelial carcinoma associated 1 (UCA1) in anti-cancer drug resistance has been confirmed in many cancers. Overexpression of lncRNA UCA1 correlates with resistance to chemotherapeutics such as cisplatin, gemcitabine, 5-FU, tamoxifen, imatinib and EGFR-TKIs, whereas lncRNA UCA1 knockdown restores drug sensitivity. These studies highlight the potential of lncRNA UCA1 as a diagnostic and prognostic biomarker, and a therapeutic target in malignant tumors. In this review, we address the role of lncRNA UCA1 in anti-cancer drug resistance and discuss its potential in future clinical applications.
                Bookmark

                Author and article information

                Contributors
                ningyan4624732@163.com
                Journal
                Cancer Cell Int
                Cancer Cell Int
                Cancer Cell International
                BioMed Central (London )
                1475-2867
                12 June 2020
                12 June 2020
                2020
                : 20
                : 236
                Affiliations
                GRID grid.470937.e, Department of Pediatrics, , Luoyang Central Hospital Affiliated To Zhengzhou University, ; No. 288 Zhongzhou Middle Road, Luoyang, 471000 Henan China
                Author information
                http://orcid.org/0000-0003-0824-1020
                Article
                1291
                10.1186/s12935-020-01291-y
                7291484
                32536824
                a4fd4916-dcc1-4f66-b18b-8218c12ab03b
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 8 January 2020
                : 23 May 2020
                Categories
                Primary Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                snhg16,mir-338-3p,plk4,cisplatin resistance,neuroblastoma
                Oncology & Radiotherapy
                snhg16, mir-338-3p, plk4, cisplatin resistance, neuroblastoma

                Comments

                Comment on this article