Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multivariate response and parsimony for Gaussian cluster-weighted models

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A family of parsimonious Gaussian cluster-weighted models is presented. This family concerns a multivariate extension to cluster-weighted modelling that can account for correlations between multivariate responses. Parsimony is attained by constraining parts of an eigen-decomposition imposed on the component covariance matrices. A sufficient condition for identifiability is provided and an expectation-maximization algorithm is presented for parameter estimation. Model performance is investigated on both synthetic and classical real data sets and compared with some popular approaches. Finally, accounting for linear dependencies in the presence of a linear regression structure is shown to offer better performance, vis-\`{a}-vis clustering, over existing methodologies.

          Related collections

          Author and article information

          Journal
          2014-11-03
          2016-02-26
          1411.0560

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          stat.CO stat.ME stat.ML

          Machine learning, Methodology, Mathematical modeling & Computation

          Comments

          Comment on this article