20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Extracellular nucleotides have long been known to play neuromodulatory roles and to be involved in intercellular signalling. In the olfactory system, ATP is released by olfactory neurons, and exogenous ATP can evoke an increase in intracellular calcium concentration in sustentacular cells, the nonneuronal supporting cells of the olfactory epithelium. Here we investigate the hypothesis that olfactory neurons communicate with sustentacular cells via extracellular ATP and purinergic receptor activation.

          Results

          Here we show that exposure of mice to a mixture of odorants induced a significant increase in the levels of the transcription factor CREB phosphorylated at Ser-133 in the nuclei of both olfactory sensory neurons and sustentacular cells. This activation was dependent on adenylyl cyclase III-mediated olfactory signaling and on activation of P2Y purinergic receptors on sustentacular cells. Purinergic receptor antagonists inhibited odorant-dependent CREB phosphorylation specifically in the nuclei of the sustentacular cells.

          Conclusion

          Our results point to a possible role for extracellular nucleotides in mediating intercellular communication between the neurons and sustentacular cells of the olfactory epithelium in response to odorant exposure. Maintenance of extracellular ionic gradients and metabolism of noxious chemicals by sustentacular cells may therefore be regulated in an odorant-dependent manner by olfactory sensory neurons.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Function and regulation of CREB family transcription factors in the nervous system.

          CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel multigene family may encode odorant receptors: a molecular basis for odor recognition.

            The mammalian olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants presumably results from the association of odorous ligands with specific receptors on olfactory sensory neurons. To address the problem of olfactory perception at a molecular level, we have cloned and characterized 18 different members of an extremely large multigene family that encodes seven transmembrane domain proteins whose expression is restricted to the olfactory epithelium. The members of this novel gene family are likely to encode a diverse family of odorant receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133.

              In this paper, we demonstrate that phosphorylation of CREB at Ser-133 is induced 6-fold in vivo, following treatment of PC12 cells with forskolin. By contrast, no such induction was observed in the kinase A-deficient PC12 line A126-1B2 (A126). Using F9 teratocarcinoma cells, which are unresponsive to cAMP, we initiated a series of transient expression experiments to establish a causal link between phosphorylation of CREB and trans-activation of cAMP-responsive genes. Inactivating the kinase A phosphorylation site by in vitro mutagenesis of the cloned CREB cDNA at Ser-133 completely abolished CREB transcriptional activity. As CREB mutants containing acidic residues in place of the Ser-133 phosphoacceptor were also transcriptionally inactive, these results suggest that phosphorylation of CREB may stimulate transcription by a mechanism other than by simply providing negative charge.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2011
                22 August 2011
                : 12
                : 86
                Affiliations
                [1 ]Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
                [2 ]Department of Physiology, College of Medical Sciences, Nova Southeastern University, FL 33328, USA
                [3 ]NeuroScience Research Center, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
                [4 ]Department of Cell Physiology, Universitätsstrasse 150, 44780 Ruhr-University Bochum, Bochum, Germany
                Article
                1471-2202-12-86
                10.1186/1471-2202-12-86
                3176191
                21859486
                a51b8c8e-d0e6-46a8-8c22-b98ce153ea99
                Copyright ©2011 Dooley et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 February 2011
                : 22 August 2011
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article