41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schistosoma mansoni Stomatin Like Protein-2 Is Located in the Tegument and Induces Partial Protection against Challenge Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Schistosomiasis affects more than 200 million individuals worldwide, with a further 650 million living at risk of infection, constituting a severe health problem in developing countries. Even though an effective treatment exists, it does not prevent re-infection, and the development of an effective vaccine still remains the most desirable means of control for this disease.

          Methodology/Principal Findings

          Herein, we report the cloning and characterization of a S. mansoni Stomatin- like protein 2 (SmStoLP-2). In silico analysis predicts three putative sites for palmitoylation (Cys11, Cys61 and Cys330), which could contribute to protein membrane association; and a putative mitochondrial targeting sequence, similar to that described for human Stomatin- like protein 2 (HuSLP-2). The protein was detected by Western blot with comparable levels in all stages across the parasite life cycle. Fractionation by differential centrifugation of schistosome tegument suggested that SmStoLP-2 displays a dual targeting to the tegument membranes and mitochondria; additionally, immunolocalization experiments confirm its localization in the tegument of the adult worms and, more importantly, in 7-day-old schistosomula. Analysis of the antibody isotype profile to rSmStoLP-2 in the sera of patients living in endemic areas for schistosomiasis revealed that IgG1, IgG2, IgG3 and IgA antibodies were predominant in sera of individuals resistant to reinfection as compared to those susceptible. Next, immunization of mice with rSmStoLP-2 engendered a 30%–32% reduction in adult worm burden. Protective immunity in mice was associated with specific anti-rSmStoLP-2 IgG1 and IgG2a antibodies and elevated production of IFN-γ and TNF-α, while no IL-4 production was detected, suggesting a Th1-predominant immune response.

          Conclusions/Significance

          Data presented here demonstrate that SmStoLP-2 is a novel tegument protein located in the host-parasite interface. It is recognized by different subclasses of antibodies in patients resistant and susceptible to reinfection and, based on the data from murine studies, shows protective potential against schistosomiasis. These results indicate that SmStoLP-2 could be useful in a combination vaccine.

          Author Summary

          Schistosomiasis is a parasitic disease causing serious chronic morbidity in tropical countries. Together with the publication of the transcriptome database, a series of new vaccine candidates were proposed based on their functional classification. However, the prediction of vaccine candidates from sequence information or even by proteomics or microarrays data is somewhat speculative and there remains the considerable task of functional analysis of each new gene/protein. In this study, we present the characterization of one of these molecules, a stomatin like protein 2 (SmStoLP-2). Sequence analysis predicts signals that could contribute to protein membrane association and mitochondrial targeting, which was confirmed by differential extractions of schistosome tegument membranes and mitochondria. Additionally, confocal microscope analysis showed SmStoLP-2 present in the tegument of 7-day-old schistosomula and adult worms. Studies in patients living in endemic areas for schistosomiasis revealed high levels of IgG1, IgG2, IgG3 and IgA anti-SmStoLP-2 antibodies in individuals resistant to reinfection. Recombinant SmStoLP-2 protein, when used as vaccine, induced significant levels of protection in mice. This reduction in worm burden was associated with a typical Th1-type immune response. These results indicate that SmStoLP-2 could be useful in association with other antigens for the composition of a vaccine against schistosomiasis.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni.

          Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers.

            Recent evidence suggest that resistance to praziquantel (PZQ) may be developing. This would not be surprising in countries like Egypt where the drug has been used aggressively for more that 10 years. The classic phenotype of drug resistance is a significant increase in the 50% effective dose value of isolates retrieved from patients not responding to the drug. In a previous publication, we reported that such phenotypes have been isolated from humans infected with Schistosoma mansoni. Since the action of PZQ may be dependent upon the drug and host factors, most notably the immune system, we analyzed the quantitative effects of PZQ on single worms that differed in their response to PZQ when maintained in mice. Our hypothesis was that the in vitro action of the drug would correlate with it in vivo action. We confirmed this hypothesis and conclude that the in vitro action of the drug is related to its in vivo action. Knowing this relationship will assist in our ability to detect or survey for the PZQ resistant phenotype in human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A stomatin-domain protein essential for touch sensation in the mouse.

              Touch and mechanical pain are first detected at our largest sensory surface, the skin. The cell bodies of sensory neurons that detect such stimuli are located in the dorsal root ganglia, and subtypes of these neurons are specialized to detect specific modalities of mechanical stimuli. Molecules have been identified that are necessary for mechanosensation in invertebrates but so far not in mammals. In Caenorhabditis elegans, mec-2 is one of several genes identified in a screen for touch insensitivity and encodes an integral membrane protein with a stomatin homology domain. Here we show that about 35% of skin mechanoreceptors do not respond to mechanical stimuli in mice with a mutation in stomatin-like protein 3 (SLP3, also called Stoml3), a mammalian mec-2 homologue that is expressed in sensory neurons. In addition, mechanosensitive ion channels found in many sensory neurons do not function without SLP3. Tactile-driven behaviours are also impaired in SLP3 mutant mice, including touch-evoked pain caused by neuropathic injury. SLP3 is therefore indispensable for the function of a subset of cutaneous mechanoreceptors, and our data support the idea that this protein is an essential subunit of a mammalian mechanotransducer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                February 2010
                9 February 2010
                : 4
                : 2
                : e597
                Affiliations
                [1 ]Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
                [2 ]Departmento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
                [3 ]Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
                [4 ]Laboratório de Imunologia e Biologia Molecular, Centro de Pesquisas René Rachou (CPqRR), Fiocruz, Belo Horizonte, MG, Brazil
                [5 ]Department of Biology, University of York, York, United Kingdom
                George Washington University, United States of America
                Author notes

                Conceived and designed the experiments: LPF FCC TK RCO PSC RAW SCO LCCL. Performed the experiments: LPF FCC PAM BOM CAT PSC. Analyzed the data: LPF FCC PAM BOM CAT HKR TK AG RCO PSC RAW SCO LCCL. Contributed reagents/materials/analysis tools: AG RCO RAW SCO LCCL. Wrote the paper: LPF FCC RAW SCO LCCL.

                Article
                09-PNTD-RA-0106R3
                10.1371/journal.pntd.0000597
                2817717
                20161725
                a524f2d3-80be-4a87-86ac-dba245699081
                Farias et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 April 2009
                : 14 December 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biotechnology
                Immunology
                Infectious Diseases/Helminth Infections
                Molecular Biology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article